The disclosure of the mechanisms of nanoparticle interaction with specific intracellular targets represents one of the key tasks in nanobiology. Unmodified luminescent semiconductor nanoparticles, or quantum dots (QDs), are capable of a strikingly rapid accumulation in the nuclei and nucleoli of living human cells, driven by processes of yet unknown nature. Here, it is hypothesized that such a strong tropism of QDs could be mediated by charge-related properties of the macromolecules presented in the nuclear compartments. As the complex microenvironment encountered by the QDs in the nuclei and nucleoli of live cells is primarily presented by proteins and other biopolymers, such as DNA and RNA, the model of human phagocytic cell line THP1, nuclear lysates, purified protein, and nucleic acid solutions is utilized to investigate the interactions of the QDs with these most abundant classes of intranuclear macromolecules. Using a combination of advanced technological approaches, including live cell confocal microscopy, fluorescent lifetime imaging (FLIM), spectroscopic methods, and zeta potential measurements, it is demonstrated that unmodified CdTe QDs preferentially bind to the positively charged core histone proteins as opposed to the DNA or RNA, resulting in a dramatic shift off the absorption band, and a red shift and decrease in the pholuminescence (PL) intensity of the QDs. FLIM imaging of the QDs demonstrates an increased formation of QD/protein aggregates in the presence of core histones, with a resulting significant reduction in the PL lifetime. FLIM technology for the first time reveals that the localization of negatively charged QDs to their ultimate nuclear and nucleolar destinations dramatically affects the QDs' photoluminescence lifetimes, and offers thereby a sensitive readout for physical interactions between QDs and their intracellular macromolecular targets. These findings strongly suggest that charge-mediated QD/histone interactions could provide the basis for QD nuclear localization downstream of intracellular transport mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.200800088 | DOI Listing |
ACS Nano
January 2025
Institute of Photonics and of Nanotechnologies- National Researcher Council (IFN-CNR), LNESS Laboratory, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy.
Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFMolecules
December 2024
Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
Ternary InGaP quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core-shell structure readily forms.
View Article and Find Full Text PDFSci Rep
January 2025
Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
The fabrication of dual-quantum dot heterostructures offers a promising strategy to enhance the environmental remediation performance of photocatalysts. Herein, a BiWO-based Z-scheme heterojunction was constructed by incorporating carbonized polymer dots (CPDs) and CdS quantum dots (QDs) via a microwave-assisted solvothermal method. The 1 wt% CPDs/CdS QDs/BiWO (CCBW-1) composite achieved optimal Cr(VI) removal, reaching 97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!