Expression of endoplasmic reticulum chaperones in cardiac development.

Open Cardiovasc Med J

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Published: October 2009

To determine if cardiogenesis causes endoplasmic reticulum stress, we examined chaperone expression. Many cardiac pathologies cause activation of the fetal gene program, and we asked the reverse: could activation of the fetal gene program during development induce endoplasmic reticulum stress/chaperones? We found stress related chaperones were more abundant in embryonic compared to adult hearts, indicating endoplasmic reticulum stress during normal cardiac development. To determine the degree of stress, we investigated endoplasmic reticulum stress pathways during cardiogenesis. We detected higher levels of ATF6alpha, caspase 7 and 12 in adult hearts. Thus, during embryonic development, there is large protein synthetic load but there is no endoplasmic reticulum stress. In adult hearts, chaperones are less abundant but there are increased levels of ATF6alpha and ER stress-activated caspases. Thus, protein synthesis during embryonic development does not seem to be as intense a stress as is required for apoptosis that is found during postnatal remodelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570582PMC
http://dx.doi.org/10.2174/1874192400802010031DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
24
reticulum stress
16
adult hearts
12
cardiac development
8
development determine
8
activation fetal
8
fetal gene
8
gene program
8
chaperones abundant
8
levels atf6alpha
8

Similar Publications

The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice.

Parasitol Int

December 2024

Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan. Electronic address:

Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients.

View Article and Find Full Text PDF

Inhibition of Endoplasmic Reticulum Stress Cooperates with SLC7A11 to Promote Disulfidptosis and Suppress Tumor Growth upon Glucose Limitation.

Adv Sci (Weinh)

December 2024

Department of Hepatobiliary Surgery, the First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Disulfidptosis is a newly discovered type of regulated cell death triggered by disulfide bond accumulation and NADPH (nicotinamide adenine dinucleotide phosphate) depletion due to glucose deprivation. However, the regulatory mechanisms involving additional cellular circuits remain unclear. Excessive disulfide bond accumulation can impair endoplasmic reticulum (ER) homeostasis and activate the ER stress response.

View Article and Find Full Text PDF

Hepatic fibrinogen storage disease is an uncommon autosomal dominant hereditary illness marked by hypofibrinogenemia and the accumulation of variant fibrinogen in the hepatic endoplasmic reticulum. We present an asymptomatic 15-month-old male with elevated liver enzymes. Test results indicate hypofibrinogenemia.

View Article and Find Full Text PDF

Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract.

View Article and Find Full Text PDF

Deciphering metabolic shifts in Gaucher disease type 1: a multi-omics study.

J Mol Med (Berl)

December 2024

Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France.

Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!