Non-homologous end joining (NHEJ) is the major mechanism of double-strand break repair (DSBR) in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs). Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler DNA, prevents nuclear processing of DSBs that could result in deleterious repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567098PMC
http://dx.doi.org/10.1371/journal.pgen.1000237DOI Listing

Publication Analysis

Top Keywords

repair
9
double-strand break
8
break repair
8
experimental systems
8
breaks nhej
8
naturally occurring
8
numt integration
8
repair patterns
8
deletion frequency
8
filler dna
8

Similar Publications

Masquelet technique combined with concentrated growth factors for the reconstruction of rabbit mandibular marginal bone defect.

Clin Oral Investig

January 2025

Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, 350002, China.

Objective: Both the Masquelet technique (MT) and concentrated growth factors (CGF) reduce early graft loss and improve bone regeneration. This study aims to explore the efficacy of combining MT with CGF for mandibular defect repair by characterizing the induced membrane and assessing in vivo osteogenesis.

Materials And Methods: Three experimental groups were compared: negative control (NC), MT, and Masquelet combined with CGF (MTC).

View Article and Find Full Text PDF

Persimmon (Diospyros kaki L.) leaves are a traditional medicinal herb used for treating many infectious and inflammatory-related conditions, including wound healing. To validate its traditional use, our study evaluates the acute toxicity and wound-healing effects of methanolic extracts of Persimmon (Diospyros kaki L.

View Article and Find Full Text PDF

Background: Upper eyelid ptosis is a common aesthetic concern among Asian patients, resulting in a tired and drowsy appearance that affects their attractiveness. The levator advancement technique is widely used for ptosis correction; however, achieving precise results remains challenging.

Objectives: This study introduces a modified approach to improve the accuracy of levator aponeurosis advancement by focusing on precise measurements and anterior displacement within a defined corneal range.

View Article and Find Full Text PDF

The kinetics of uracil-N-glycosylase distribution inside replication foci.

Sci Rep

January 2025

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.

Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!