Janus-activated kinases (JAKs) and Src family kinases (SFKs) and their common substrate signal transducer and activator of transcription (STAT)-3 are frequently hyperactivated in human cancer contributing to the proliferative drive by promoting G(1)/S and G(2)/M progression. Previous studies have established that the protein tyrosine phosphatase TCPTP can dephosphorylate and inactivate the SFK and JAK protein tyrosine kinases (PTKs) to attenuate cytokine signalling in vivo. In this study we determined whether TCPTP regulates SFK and JAK signalling during the cell cycle. We used primary mouse embryonic fibroblasts (MEFs) isolated from TCPTP(-/-) versus +/+ mice, immortalised TCPTP(-/-) MEFs versus those reconstituted with physiological levels of TCPTP and HeLa cells in which TCPTP protein levels had been suppressed by RNA interference, to establish TCPTP as a negative regulator of SFK, JAK1 and STAT3 signalling during the cell cycle. We found that the progression of TCPTP-deficient MEFs after the G(1) restriction point into S-phase was enhanced. We used RNA interference and pharmacological inhibitors to demonstrate that elevated SFK and downstream phosphatidylinositol 3-kinase signalling but not JAK1 or STAT3 signalling were required for the enhanced G(1)/S transition. These results identify TCPTP as a negative regulator of the cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.7.21.6950DOI Listing

Publication Analysis

Top Keywords

jak1 stat3
12
stat3 signalling
12
protein tyrosine
12
cell cycle
12
sfk jak1
8
tyrosine phosphatase
8
phosphatase tcptp
8
sfk jak
8
signalling cell
8
rna interference
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!