Aim: To estimate the cost-effectiveness of universal childhood rotavirus vaccination in Belgium, taking into account the impact of caregiver burden and the burden of sick children for whom no medical care is sought ("no medical care'' ).
Methods: A cohort of newborns is modeled in relation to costs and health outcomes for rotavirus disease, distinguishing episodes leading to consultations, hospitalizations, and deaths from no medical care episodes. Fully funded universal vaccination is compared with no vaccination as well as with the current situation in Belgium, whereby the 2-dose Rotarix or the 3-dose RotaTeq vaccine can be bought at market prices, which are partially reimbursed.
Results: Compared with no vaccination, fully funded universal rotavirus vaccination would cost 51,030 per quality-adjusted life year (QALY) gained with Rotarix and 65,767 with RotaTeq (for society, 7572 and 30,227 per QALY, respectively). However, there is considerable uncertainty due to some analytical choices: the proportion of simulations with an acceptable incremental cost-effectiveness ratio (given a willingness to pay 50,000 for an additional QALY), increases from 2%/0.6% (Rotarix/RotaTeq) to 86%/59% when considering no medical care, and including 2 caregivers to estimate QALY loss instead of zero. Uncertainty is greater still under the societal than under the health care payer perspective.
Conclusion: For the Belgian health care payer, at current vaccine prices, universal childhood rotavirus vaccination is unlikely to be judged cost-effective versus no vaccination but would be a more efficient and equitable choice than continuing with current practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0272989X08324955 | DOI Listing |
Virology
December 2024
Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan; Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, 10101, Zambia. Electronic address:
Rotavirus C (RVC) causes acute gastroenteritis in neonatal piglets. Despite the clinical importance of RVC infection, the distribution and prevalence in pig populations in most African countries remains unknown. In this study, we identified RVC in Zambian pigs by metagenomic analysis.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China. Electronic address:
Significant efforts were currently being made worldwide to develop a tool capable of distinguishing between various harmful viruses through simple analysis. In this study, we utilized fluorescence excitation-emission matrix (EEM) spectroscopy as a rapid and specific tool with high sensitivity, employing a straightforward methodological approach to identify spectral differences between samples of respiratory infection viruses. To achieve this goal, the fluorescence EEM spectral data from eight virus samples was divided into training and test sets, which were then analyzed using random forest and support vector machine classification models.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
GSK, Verona, Italy.
Rotavirus, a leading cause of severe acute gastroenteritis in children, is largely preventable through immunization with two internationally licensed oral rotavirus vaccines (RVVs) included in national programs across over 100 countries. These RVVs are administered in either two (Rotarix™; 2D-RV) or three (RotaTeq®; 3D-RV) doses. We aimed to assess the global coverage, completion, and compliance of 2D-RV and 3D-RV in various settings, and to identify factors influencing vaccine coverage.
View Article and Find Full Text PDFJ Multidiscip Healthc
December 2024
Department of Epidemiology and Biostatistics, School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.
Background: Malnourished children in low- and middle-income countries (LMICs) often exhibit reduced vaccine efficacy, particularly for oral vaccines like polio and rotavirus, due to impaired immune responses. Nutritional deficiencies, such as in vitamin A and zinc, along with environmental factors like poor sanitation, exacerbate this issue. Existing research has explored the individual impacts of malnutrition on vaccine outcomes, but a comprehensive framework that integrates nutritional, immune, and environmental factors has been lacking.
View Article and Find Full Text PDFAm J Epidemiol
December 2024
Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States.
Rotavirus vaccine appears to perform sub-optimally in countries with higher rotavirus burden. We hypothesized that differences in the magnitude of rotavirus exposures may bias vaccine efficacy (VE) estimates, so true differences in country-specific rotavirus VE would be exaggerated without accommodating differences in exposure. We estimated VE against any-severity and severe rotavirus gastroenteritis (RVGE) using Poisson regression models fit to pooled individual-level data from Phase II and III monovalent rotavirus vaccine trials conducted between 2000 and 2012.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!