The human sarco/endoplasmic reticulum (ER) Ca(2+)ATPase 3 (SERCA3) gene gives rise to SERCA3a-3f isoforms, the latter inducing ER stress in vitro. Here, we first demonstrated the co-expression of SERCA3a, -3d and -3f proteins in the heart. Evidence for endogenous proteins was obtained by using isoform-specific antibodies including a new SERCA3d-specific antibody, and either Western blotting of protein lysates or immunoprecipitation of membrane proteins. An immunolocalization study of both left ventricle tissue and isolated cardiomyocytes showed a distinct compartmentalization of the SERCA3 isoforms, as a uniform distribution of SERCA3a was detected while -3d and -3f isoforms were observed around the nucleus and in close vicinity of plasma membrane, respectively. Second, we studied their expressions in failing hearts including mixed (MCM) (n=1) and idiopathic dilated (IDCM) cardiomyopathies (n=4). Compared with controls (n=5), similar expressions of SERCA3a and -3d mRNAs were observed in all patients. In contrast, SERCA3f mRNA was found to be up-regulated in failing hearts (125+/-7%). Remarkably, overexpression of SERCA3f paralleled an increase in ER stress markers including processing of X-box-binding protein-1 (XBP-1) mRNA (176+/-24%), and expression of XBP-1 protein and glucose-regulated protein (GRP)78 (232+/-21%). These findings revisit the human heart's Ca(2+)ATPase system and indicate that SERCA3f may account for the mechanism of ER stress in vivo in heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2008.08.002 | DOI Listing |
Biol Pharm Bull
December 2024
Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University.
Mucociliary clearance (MCC) is a host defense mechanism of the respiratory system. Beating cilia plays a crucial role in the MCC process and ciliary beat frequency (CBF) is activated by several factors including elevations of the intracellular cAMP concentration ([cAMP]), intracellular Ca concentration ([Ca]), and intracellular pH (pH). In this study, we investigated whether an artichoke-extracted component cynaropicrin could be a beneficial compound for improving MCC.
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada. Electronic address:
Int J Mol Sci
November 2024
Graduate Program in Translational Biomedicine (BIOTRANS), Grande Rio University (UNIGRANRIO), Duque de Caxias 25071-202, Brazil.
The central aim of this study was to investigate whether male Wistar rats chronically fed a high-fat diet (HFD) over 106 days present high levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and Na and Ca transport alterations in the left ventricle, together with dyslipidemia and decreased glucose tolerance, and to investigate the influence of Ang-(3-4). The rats became moderately overweight with an expansion of visceral adiposity. Na-transporting ATPases, sarco-endoplasmic reticulum Ca-ATPase (SERCA2a), and the abundance of Angiotensin II receptors were studied together with lipid and glycemic profiles from plasma and left-ventricle echocardiographic parameters fractional shortening (FS) and ejection fraction (EF).
View Article and Find Full Text PDFCells
November 2024
Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Sarco/endoplasmic reticulum Ca-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda MD 20814.
Highly regulated cardiomyocyte Ca fluxes drive heart contractions. Recent findings from multiple organisms demonstrate that the specific Ca transport mechanism known as store-operated Ca entry (SOCE) is essential in cardiomyocytes for proper heart function, and SOCE dysregulation results in cardiomyopathy. Mechanisms that regulate SOCE in cardiomyocytes are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!