Recent models of community assembly, structure, and dynamics have incorporated, to varying degrees, three mechanistic processes: resource limitation and interspecific competition, niche requirements of species, and exchanges between a local community and a regional species pool. Synthesizing 30 years of data from an intensively studied desert rodent community, we show that all of these processes, separately and in combination, have influenced the structural organization of this community and affected its dynamical response to both natural environmental changes and experimental perturbations. In addition, our analyses suggest that zero-sum constraints, niche differences, and metacommunity processes are inextricably linked in the ways that they affect the structure and dynamics of this system. Explicit consideration of the interaction of these processes should yield a deeper understanding of the assembly and dynamics of other ecological communities. This synthesis highlights the role that long-term data, especially when coupled with experimental manipulations, can play in assessing the fundamental processes that govern the structure and function of ecological communities.

Download full-text PDF

Source
http://dx.doi.org/10.1086/592402DOI Listing

Publication Analysis

Top Keywords

community assembly
8
structure dynamics
8
ecological communities
8
community
5
processes
5
sum niche
4
niche metacommunities
4
metacommunities long-term
4
dynamics
4
long-term dynamics
4

Similar Publications

Endophytes typically coexist with plants in symbiosis and transition into the saprobic system as plant tissues senesce, participating in the decomposition process of litter. However, the dynamic changes of endophytic communities during this process and their role in litter decomposition remain unclear. This study tracked the microbial composition across the transition from live leaves to litter in (L.

View Article and Find Full Text PDF

Precipitation changes reshape desert soil microbial community assembly and potential functions.

Environ Res

January 2025

Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Understanding the responses of desert microbial communities to escalating precipitation changes is a significant knowledge gap in predicting future soil health and ecological function. Through a five-year precipitation manipulation experiment, we investigated the contrasting eco-evolutionary processes of desert bacteria and fungi that manifested in changes to the assembly and potential functions of the soil microbiome. Elevated precipitation increased the alpha diversity and network complexity of bacteria and fungi, proportion of non-dominant phyla, and abundance of carbon- and nitrogen-fixing bacteria and saprophytic, symbiotic, and pathogenic fungi.

View Article and Find Full Text PDF

The expansion of aquaculture areas has encroached upon vast areas of coastal wetlands and introduced excessive nitrogen inputs, disrupting microbial communities and contributing to various environmental issues. However, investigations on how aquaculture affects microbial communities and nitrogen metabolism mechanisms in coastal tidal flats remain scarce. Hence, we explored the composition, diversity, and assembly processes of nitrogen-cycling (N-cycling) microbial communities in tidal flats in Jiangsu using metagenomic assembly methods.

View Article and Find Full Text PDF

Long-term response mechanism of bacterial communities to chemical oxidation remediation in petroleum hydrocarbon contaminated groundwater.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China. Electronic address:

The limited understanding of microbial response mechanism remains as a bottleneck to evaluate the long-term remediation effectiveness of in situ chemical oxidation in contaminated groundwater. In this study, we investigated long-term response of bacterial communities throughout five remediation stages of pre-oxidation, early-oxidation, late-oxidation, early-recovery and late-recovery. By analyzing bacterial biomass, taxa, diversity and metabolic functions, this work identified the consistently suppressed glyceraldehyde-3-phosphate dehydrogenase pathway and the enrichment of naphthalene degradation pathways for secondary products, suggesting persistent oxidation stress and enhanced microbial utilization of lower-molecular weight carbon sources at the oxidation and early-recovery stages.

View Article and Find Full Text PDF

The composition of the gut microbiome is determined by a complex interplay of diet, host genetics, microbe-microbe interactions, abiotic factors, and stochasticity. Previous studies have demonstrated the importance of host genetics in community assembly of the gut microbiome and identified a central role for DBL-1/BMP immune signaling in determining the abundance of gut . However, the effects of DBL-1 signaling on gut bacteria were found to depend on its activation in extra-intestinal tissues, highlighting a gap in our understanding of the proximal factors that determine microbiome composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!