Electroosmotic flow and its contribution to iontophoretic delivery.

Anal Chem

Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.

Published: November 2008

Iontophoresis is the movement of charged molecules in solution under applied current using pulled multibarrel glass capillaries drawn to a sharp tip. The technique is generally nonquantitative, and to address this, we have characterized the ejection of charged and neutral species using carbon-fiber electrodes attached to iontophoretic barrels. Our results show that observed ejections are due to the sum of iontophoretic and electroosmotic forces. With the use of the neutral, electroactive molecule 2-(4-nitrophenoxy) ethanol (NPE), which is only transported by electroosmotic flow (EOF), a positive correlation between the amount ejected and the diameter of each barrel's tip was found. In addition, using various charged and neutral electroactive compounds we found that, when each compound is paired with the EOF marker, the percentage of the ejection due to EOF remains constant. This percentage varies for each pair of compounds, and the differences in mobility are positively correlated to differences in electrophoretic mobility. Overall, the results show that capillary electrophoresis (CE) can be used to predict the percentage of ejection that will be due to EOF. With this information, quantitative iontophoresis is possible for electrochemically inactive drugs by using NPE as a marker for EOF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772194PMC
http://dx.doi.org/10.1021/ac801547aDOI Listing

Publication Analysis

Top Keywords

electroosmotic flow
8
charged neutral
8
neutral electroactive
8
percentage ejection
8
eof
5
flow contribution
4
contribution iontophoretic
4
iontophoretic delivery
4
delivery iontophoresis
4
iontophoresis movement
4

Similar Publications

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Microfluidic fractionation of microplastics, bacteria and microalgae with induced-charge electro-osmotic eddies.

Anal Chim Acta

February 2025

School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. Electronic address:

Background: Fractionation of microalgal cells has important applications in producing pharmaceuticals and treating diseases. Multiple types of microalgal cells generally coexist in the oceans or lakes and are easily contaminated by microplastics and bacteria. Therefore, it is of paramount significance to develop an effective fractionation approach for microalgal cells for biological applications.

View Article and Find Full Text PDF

ssDNA Capture Dynamics by Graphene Nanopores: The Role of Electrophoresis and Electro-osmotic Flow.

J Phys Chem Lett

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.

View Article and Find Full Text PDF

Instabilities in the form of periodic or irregular waves at the fluid interface have been demonstrated in microchannel electrokinetic flows with conductivity gradients when the applied electric field is above a threshold value. Most prior studies on electrokinetic instabilities (EKI) are restricted to Newtonian fluids though many of the chemical and biological samples in microfluidic applications exhibit non-Newtonian characteristics. We present in this work an experimental study of the effects of fluid shear thinning on the development of EKI waves through the addition of a small amount of xanthan gum (XG) polymer to both the high- and low-concentration Newtonian buffer solutions.

View Article and Find Full Text PDF

Enhanced Discriminability of Viral Vectors in Viscous Nanopores.

Small Methods

January 2025

Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.

Achieving safe and efficient gene therapy hinges upon the inspection of genomes enclosed within individual nano-carriers to mitigate potential health risks associated with empty or fragment-filled vectors. Here solid-state nanopore sensing is reported for identifications of intermediate adeno-associated virus (AAV) vectors in liquid. The method exploits the phenomenon of translocation slowdown induced by the viscosity of salt water-organic mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!