Perfume counterfeiting is an illegal worldwide practice that involves huge economic losses and potential consumer risk. EASI is a simple, easily performed and rapidly implemented desorption/ionization technique for ambient mass spectrometry (MS). Herein we demonstrate that EASI-MS allows nearly instantaneous perfume typification and counterfeit detection. Samples are simply sprayed onto a glass rod or paper surface and, after a few seconds of ambient drying, a profile of the most polar components of the perfume is acquired. These components provide unique and reproducible chemical signatures for authentic perfume samples. Counterfeiting is readily recognized since the exact set and relative proportions of the more polar chemicals, sometimes at low concentrations, are unknown or hard to reproduce by the counterfeiters and hence very distinct and variable EASI-MS profiles are observed for the counterfeit samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.3788DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
typification counterfeit
8
counterfeit detection
8
perfume
5
perfume fingerprinting
4
fingerprinting easy
4
easy ambient
4
ambient sonic-spray
4
sonic-spray ionization
4
ionization mass
4

Similar Publications

Article Synopsis
  • The study analyzes essential oil extracted from dry Eucalyptus globulus leaves, focusing on its chemical composition and potential health benefits.
  • The oil consists of 20 identified compounds, primarily linalool, and exhibits antifungal properties against Fusarium roseum and antibacterial effects against Pseudomonas savastanoi.
  • While it shows moderate antioxidant activity, it differs from typical eucalyptus oils by being a linalool chemotype rather than eucalyptol-dominant.
View Article and Find Full Text PDF

This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how metabolic profiles change in patients with patent foramen ovale (PFO) and migraines before and after surgery, using metabolomics techniques.
  • Significant differences in metabolites like linoleic acid and quinolinic acid were observed after surgery, indicating potential diagnostic markers for these patients.
  • The research highlights the importance of metabolic pathways related to inflammation and oxidative stress in understanding migraines associated with PFO.
View Article and Find Full Text PDF

Rationale: Wildlife scientists are quantifying steroid hormones in a growing number of tissues and employing novel methods that must undergo validation before application. This study tested the accuracy and precision of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for use on blubber samples from short-finned pilot whales (Globicephala macrorhynchus). We expanded upon a method for corticosteroid quantification by adding analytes and optimizing internal standard (IS) application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!