Synthesis of ultrasmooth nanostructured diamond films by microwave plasma chemical vapor deposition using a He/H(2)/CH(4)/N(2) gas mixture.

J Mater Res

Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35294-1170; and UAB Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, Alabama 35294-1170.

Published: October 2006

Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti-6Al-4V medical grade substrates by adding helium in H(2)/CH(4)/N(2) plasma and changing the N(2)/CH(4) gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm(2). Grain size was 4-5 nm at 71% He in (H(2) + He) and N(2)/CH(4) gas flow ratio of 0.4 without deteriorating the hardness (~50-60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N(2)/CH(4) feedgas ratio (CH(4) was fixed) in He/H(2)/CH(4)/N(2) plasma, a substantial increase of CN radical (normalized by Balmer H(α) line) was observed along with a drop in surface roughness up to a critical N(2)/CH(4) ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570640PMC
http://dx.doi.org/10.1557/JMR.2006.0334DOI Listing

Publication Analysis

Top Keywords

diamond films
16
ultrasmooth nanostructured
12
nanostructured diamond
12
n2/ch4 gas
8
gas flow
8
xrd raman
8
films
6
diamond
5
plasma
5
synthesis ultrasmooth
4

Similar Publications

Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.

View Article and Find Full Text PDF

"Suspended" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose.

J Am Chem Soc

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).

View Article and Find Full Text PDF

Versatile Thermally Activated Delayed Fluorescence Material Enabling High Efficiencies in both Photodynamic Therapy and Deep-Red/NIR Electroluminescence.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.

Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.

View Article and Find Full Text PDF

Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates.

Beilstein J Nanotechnol

January 2025

Department for Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria.

The scales of the gold-dust weevil are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations.

View Article and Find Full Text PDF

Integrating nanocrystalline diamond (NCD) films on silicon chips has great practical significance and many potential applications, including high-power electronic devices, microelectromechanical systems, optoelectronic devices, and biosensors. In this study, we provide a solution for ensuring heterogeneous interface integration between silicon (Si) chips and NCD films using low-temperature bonding technology. This paper details the design and implementation of a magnetron sputtering layer on an NCD surface, as well as the materials and process for the connection layer of the integrated interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!