Background: Helicobacter pylori infection induces a biased T helper type 1 (Th1) response that produces IFN-gamma and Fas ligand (FasL). Th1 cytokines are associated with apoptosis in the gastric epithelial cells.

Aim: We aimed to define the role of the recently cloned IL-18, a IFN-gamma inducing factor, in gastric mucosal injury induced by H. pylori infection.

Methods: Twenty-seven gastric ulcer (GU) patients and 20 functional dyspepsia (FD) patients were enrolled in this study. Mucosal biopsy samples were obtained from the gastric antrum and GU site during endoscopy. Samples were used for histological examination, H. pylori culture and in-situ stimulation for 48 h in the presence of 10 microg/ml phytohemagglutinin-P. IL-18, IFN-gamma, and soluble FasL (sFasL) levels in culture supernatants were assayed by the enzyme-linked immunosorbent assay method. IL-18, IL-1beta-converting enzyme (ICE) and caspase-3 were evaluated by western blotting in gastric cancer cell lines (MKN45) cocultured with H. pylori.

Results: All 27 GU patients and ten out of 20 FD patients were found to be H. pylori-positive, whereas ten FD patients were H. pylori-negative. Antral mucosal tissues from H. pylori-positive FD patients contained (P<0.01) higher levels of IL-18, IFN-gamma, and sFasL than those from uninfected FD patients. IL-18, IFN-gamma, and sFasL levels at the ulcer site were significantly (P<0.01) higher than those at distant sites in the antrum. A significant relationship was seen between IL-18 and IFN-gamma levels at the ulcer site (r=0.7, P<0.01). H. pylori eradication led to a significant decrease in the levels of IL-18, IFN-gamma, and sFasL at the ulcer site. Western blotting showed that IL-18, ICE, and caspase-3 were activated in gastric cancer cell lines cocultured with H. pylori.

Conclusion: This study suggests that H. pylori infection enhanced mucosal injury by stimulating a Th1 response, which was mediated by IL-18 upregulation as well as activation of ICE and caspase-3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372857PMC
http://dx.doi.org/10.1097/MEG.0b013e32830edb15DOI Listing

Publication Analysis

Top Keywords

helicobacter pylori
8
pylori infection
8
gastric epithelial
8
il-18 ifn-gamma
8
ten patients
8
gastric
6
patients
6
infection upregulates
4
upregulates interleukin-18
4
interleukin-18 production
4

Similar Publications

Helicobacter pylori (H. pylori) is one of the most globally prevalent bacteria, closely associated with gastrointestinal diseases such as gastric ulcers and chronic gastritis. Current clinical methods primarily involve Carbon-13 and Carbon-14 urea breath test, both carrying potential safety risks.

View Article and Find Full Text PDF

Early detection of a premetabolic status that is at risk for metabolic syndrome (MetS) but not meeting the criteria is crucial. This study examined 27,623 participants aged 20-50 (mean: 40.7) years who underwent initial health screening at Kangbuk Samsung Hospital (2011-2019), focusing on individuals with one or two MetS components.

View Article and Find Full Text PDF

Background: The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention.

View Article and Find Full Text PDF

() is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!