Human Discs Large is a new negative regulator of human immunodeficiency virus-1 infectivity.

Mol Biol Cell

Department of Cell Biology, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Published: January 2009

Human immunodeficiency virus (HIV)-1 replication is positively or negatively regulated through multiple interactions with host cell proteins. We report here that human Discs Large (Dlg1), a scaffold protein recruited beneath the plasma membrane and involved in the assembly of multiprotein complexes, restricts HIV-1 infectivity. The endogenous Dlg1 and HIV-1 Gag polyprotein spontaneously interact in HIV-1-chronically infected T cells. Depleting endogenous Dlg1 in either adherent cells or T cells does not affect Gag maturation, production, or release, but it enhances the infectivity of progeny viruses five- to sixfold. Conversely, overexpression of Dlg1 reduces virus infectivity by approximately 80%. Higher virus infectivity upon Dlg1 depletion correlates with increased Env content in cells and virions, whereas the amount of virus-associated Gag or genomic RNA remains identical. Dlg1 knockdown is also associated with the redistribution and colocalization of Gag and Env toward CD63 and CD82 positive vesicle-like structures, including structures that seem to still be connected to the plasma membrane. This study identifies both a new negative regulator that targets the very late steps of the HIV-1 life cycle, and an assembly pathway that optimizes HIV-1 infectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613124PMC
http://dx.doi.org/10.1091/mbc.e08-02-0189DOI Listing

Publication Analysis

Top Keywords

human discs
8
discs large
8
negative regulator
8
human immunodeficiency
8
plasma membrane
8
hiv-1 infectivity
8
endogenous dlg1
8
virus infectivity
8
infectivity
6
dlg1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!