A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. | LitMetric

Purinergic ionotropic P2X7 receptors (P2X7Rs) are closely associated with excitotoxicity and nociception. Inhibition of P2X7R activation has been considered as a potentially useful strategy to improve recovery from spinal cord injury and reduce inflammatory damage to trauma. The physiological functions of P2X7Rs, however, are poorly understood, even though such information is essential for making the P2X7R an effective therapeutic target. We show here that P2X7Rs in satellite cells of dorsal root ganglia tonically inhibit the expression of P2X3Rs in neurons. Reducing P2X7R expression using siRNA or blocking P2X7R activity by antagonists elicits P2X3R up-regulation, increases the activity of sensory neurons responding to painful stimuli, and evokes abnormal nociceptive behaviors in rats. Thus, contrary to the notion that P2X7R activation is cytotoxic, P2X7Rs in satellite cells play a crucial role in maintaining proper P2X3R expression in dorsal root ganglia. Studying the mechanism underlying the P2X7R-P2X3R control, we demonstrate that activation of P2X7Rs evokes ATP release from satellite cells. ATP in turn stimulates P2Y1 receptors in neurons. P2Y1 receptor activation appears to be necessary and sufficient for the inhibitory control of P2X3R expression. We further determine the roles of the P2X7R-P2Y1-P2X3R inhibitory control under injurious conditions. Activation of the inhibitory control effectively prevents the development of allodynia and increases the potency of systemically administered P2X7R agonists in inflamed rats. Thus, direct blocking P2X7Rs, as proposed before, may not be the best strategy for reducing pain or lessening neuronal degeneration because it also disrupts the protective function of P2X7Rs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575495PMC
http://dx.doi.org/10.1073/pnas.0801793105DOI Listing

Publication Analysis

Top Keywords

satellite cells
16
inhibitory control
12
p2x7 receptors
8
p2x7r activation
8
p2x7rs satellite
8
dorsal root
8
root ganglia
8
p2x3r expression
8
p2x7rs
7
activation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!