Paranodal axoglial junctions are essential for the segregation of myelinated axons into distinct domains and efficient conduction of action potentials. Here, we show that netrin-1 and deleted in colorectal cancer (DCC) are enriched at the paranode in CNS myelin. We then address whether netrin-1 signaling influences paranodal adhesion between oligodendrocytes and axons. In the absence of netrin-1 or DCC function, oligodendroglial paranodes initially develop and mature normally but later become disorganized. Lack of DCC or netrin-1 resulted in detachment of paranodal loops from the axonal surface and the disappearance of transverse bands. Furthermore, the domain organization of myelin is compromised in the absence of netrin-1 signaling: K+ channels inappropriately invade the paranodal region, and the normally restricted paranodal distribution of Caspr expands longitudinally along the axon. Our findings identify an essential role for netrin-1 and DCC regulating the maintenance of axoglial junctions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671358 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3285-08.2008 | DOI Listing |
Nat Commun
January 2025
Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA.
Exiting a germinal zone (GZ) initiates a cascade of events that promote neuronal maturation and circuit assembly. Developing neurons and their progenitors must interpret various niche signals-such as morphogens, guidance molecules, extracellular matrix components, and adhesive cues-to navigate this region. How differentiating neurons in mouse brains integrate and adapt to multiple cell-extrinsic niche cues with their cell-intrinsic machinery in exiting a GZ is unknown.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Neurosurgery, Freiburg University Medical Center, Breisacher Str. 64, 79106 Freiburg, Germany.
Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratory of Stress Medicine, Faculty of Psychology, Navy Medical University, 800 Xiangyin Road, Shanghai, 200433, China. Electronic address:
Front Neurosci
October 2024
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
Introduction: In the developing brain, neurons extend an axonal process through a complex and changing environment to form synaptic connections with the correct targets in response to extracellular cues. Microtubule and actin filaments provide mechanical support and drive axon growth in the correct direction. The axonal cytoskeleton responds to extracellular guidance cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!