ABSTRACT A polymerase chain reaction (PCR) assay employing species-specific primers was developed to differentiate Erysiphe necator from other powdery mildews common in the northwest United States. DNA was extracted from mycelia, conidia, and/or chasmothecia that were collected from grape leaves with a Burkard cyclonic surface sampler. To differentiate E. necator from other erysiphaeceous fungi, primer pairs Uncin144 and Uncin511 were developed to select unique sequences of the internal transcribed spacer regions of E. necator. Using these primers in PCR amplifications, a 367-bp amplicon specific to E. necator was generated, but no amplicons were generated from other erysiphaceous species collected from 48 disparate hosts representing 26 vascular plant families. The PCR limit of detection was one to five conidia of E. necator placed directly into reaction mixtures or 100 to 250 conidia placed on glass rods coated with silicon grease. During field studies, this PCR assay facilitated the detection of E. necator inoculum in air samples within hours of sample rod collection and prior to disease onset. Amplification of E. necator DNA did not occur when the PCR assay was conducted on vineyard air samples collected while grapes were dormant or during periods when vine growth occurred but E. necator remained dormant. The initial PCR detection of E. necator of the season occurred during seasonal ascospore releases caused by precipitation events between bud burst and the prebloom period during the 3 years of the study. Detection ceased for 7 to 11 days following ascospore release and then resumed several days prior to the observance of microscopic symptoms and signs of powdery mildew in the field. Results of this study represent the initial step toward the goal of incorporating an inoculum availability component into current and future grapevine powdery mildew risk assessment models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-97-10-1290 | DOI Listing |
Respir Res
January 2025
Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.
Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics and Mathematics, University of Alcalá, Alcalá de Henares, Spain.
Since 1999, every report released by the International Panel on Climate Change has advocated a decrease in the greenhouse gas emissions associated with aviation in order to preserve the current climate. This study used a two variable differential equations model with a non-linear control term to address several aspects of the emissions stabilization issue. By optimizing the control term parameter, several management alternatives can be obtained based on the properties of the phase plane of the model solutions, as identified by a stability analysis.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory for Air Pollution/Environmental Technology, Empa, 8600 Dübendorf, Switzerland.
Mid-infrared laser absorption spectroscopy enables rapid and nondestructive analysis of methane clumped isotopes. However, current analytical methods require a sample size of 20 mL STP (0.82 mmol) of pure CH gas, which significantly limits its application to natural samples.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 999077, Hong Kong SAR.
p-Phenylenediamine (PPD) antioxidants and their quinone derivatives (PPDQs), as hot-spot novel contaminants in recent years, have been detected in air fine particulate matters (PM) in multiple regions. However, current research all discussed the pollution of PPDs and PPDQs based on the collected PM samples at least in one day (23.5 h).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!