ABSTRACT In the Mediterranean Basin, Fusarium oxysporum f. sp. ciceris and the root-knot nematode Meloidogyne artiellia coinfect chickpea. The influence of root infection (after inoculation with 20 nematode eggs and second-stage juveniles per gram of soil) by two M. artiellia populations, from Italy and Syria, on the reaction of chickpea lines and cultivars with partial resistance to Fusarium wilt (CA 252.10.1.OM, CA 255.2.5.0, CPS 1, and PV 61) and with complete resistance to F. oxysporum f. sp. ciceris race 5 (CA 334.20.4, CA 336.14.3.0, ICC 14216 K, and UC 27) was investigated under controlled conditions. In genotypes with partial resistance, infection by M. artiellia significantly increased the severity of Fusarium wilt, irrespective of the fungal inoculum density (3,000 or 30,000 chlamydospores per gram of soil), except in cultivar CPS 1 at the lower fungal inoculum density. In genotypes with complete resistance to Fusarium wilt, infection by M. artiellia overcame the resistance to F. oxysporum f. sp. ciceris race 5 in CA 334.20.4 and CA 336.14.3.0 but not in ICC 14216 K, irrespective of the fungal inoculum density, and overcame the resistance in UC 27 only at the higher inoculum density. Infection by the nematode significantly increased the number of propagules of F. oxysporum f. sp. ciceris race 5 in root tissues of genotypes with complete resistance to Fusarium wilt, compared with roots that were not inoculated with the nematode, irrespective of the fungal inoculum density, except in ICC 14216 K, in which this effect occurred only at the higher inoculum density. Reproduction of an M. artiellia population from Syria in the absence of F. oxysporum f. sp. ciceris race 5 was significantly higher than that of a population from Italy in all tested chick-pea genotypes except ICC 14216 K. However, there was no significant difference between the reproduction rates of the two nematode populations in plants infected with F. oxysporum f. sp. ciceris race 5, irrespective of the fungal inoculum density and the reaction of the genotypes to the fungus.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO.2003.93.12.1513DOI Listing

Publication Analysis

Top Keywords

oxysporum ciceris
28
inoculum density
28
ciceris race
24
fungal inoculum
20
fusarium wilt
16
icc 14216
16
irrespective fungal
16
resistance fusarium
12
complete resistance
12
meloidogyne artiellia
8

Similar Publications

Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Chickpea defense against dual stresses of salt and Fusarium wilt is enhanced through selected bHLH transcription factors carrying the bHLH-MYC_N domain.

Plant Physiol Biochem

January 2025

Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

The plant transcriptome varies between combined stresses and single stresses, and is regulated differentially by transcription factors. Therefore, understanding the complexities of plant interactions with pathogens in stressed soils is always a challenge. In chickpea, 197 CabHLH genes were newly identified.

View Article and Find Full Text PDF

Background: Commercial/chemical pesticides are available to control wilt of chickpea, but these antifungals have numerous environmental and human health hazards. Amongst various organic alternatives, use of antagonistic fungi like , is the most promising option. Although, spp.

View Article and Find Full Text PDF

Chickpeas contribute to half of the pulses produced in India and are an excellent source of protein, fibers, carbohydrates, minerals, and vitamins. However, the combination of the wilt and root rot diseases drastically lowers its yield. The use of antagonist microbes that restrict the growth of other phytopathogens is an ecofriendly approach to combat the serious threats raised by the plant pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!