ABSTRACT Between 1998 and 1999, control failure of powdery mildew (Podosphaera fusca) and downy mildew (Pseudoperonospora cubensis) by the strobilurin fungicides azoxystrobin and kresoxim-methyl was observed in cucumber-growing areas of Japan. Results from inoculation tests carried out on intact cucumber plants and leaf disks clearly showed the distribution of pathogen isolates highly resistant to azoxystrobin and kresoximmethyl. Fragments of the fungicide-targeted mitochondrial cytochrome b gene were polymerase chain reaction amplified from total pathogen DNA and their sequences analyzed to elucidate the molecular mechanism of resistance. A single point mutation (GGT to GCT) in the cytochrome b gene, resulting in substitution of glycine by alanine at position 143, was found in resistant isolates of downy mildew. This substitution in cytochrome b seemed to result in high resistance to strobilurins in this pathogen. The same mutation was found in some but not all resistant isolates of powdery mildew. This study suggests that a mutation at position 143 in the target-encoding gene, resulting in an amino acid substitution, was probably a major cause of the rapid development of high strobilurin resistance in these two pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO.2001.91.12.1166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!