ABSTRACT We investigated the interaction of several differentially resistant wheatwith the hemibiotrophic phytopathogenic fungus Bipolaris sorokiniana (teleomorph Cochliobolus sativus). Wheat genotypes Yangmai, M 3 (W7976), Shanghai 4, and Chirya 7 showed higher levels of resistancewith cv. Sonalika, used as a susceptible control. In amicroscopic inspection, we found that fungal penetration intoepidermal layer failed mostly through a cell wall-associated defense. In cases where the fungus successfully overcame epidermal, its spread within the mesophyll tissue (necrotrophic phase) wasin the more resistant genotypes. Epidermal cell wall-associated, spreading as well as the extent of electrolyte leakage of infected, correlated well with field resistance. We propose that cellular hostsuch as formation of cell wall appositions as well as the degreeearly mesophyll spreading of fungal hyphae are indicative of thepotential of the respective host genotype and, therefore, could befor the characterization of new spot blotch resistance traits in cereals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-95-0528 | DOI Listing |
PLoS One
January 2025
Wolaita Sodo University, Sodo, South Ethiopian Region, Ethiopia.
Smallholder wheat farmers of Ethiopia frequently use landraces as seed sources that are low yielders and susceptible to diseases due to shortage of seeds of adapted improved bread wheat varieties. Developing novel improved varieties with wider adaptability and stability is necessary to maximize the productivity of bread wheat. Hence, a multi-location field trial was conducted across four locations in south Ethiopia during the 2022/23 main cropping season with the objective of estimating the magnitude of genotype by environment interaction (GEI) effect, and determine the stable genotype among the 10 Ethiopian bread wheat advanced selections using a randomized complete block design (RCBD) with three replications.
View Article and Find Full Text PDFMol Plant
January 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:
The integration of genotypic and environmental data can enhance the prediction accuracy of field traits of crops. The existing genomic prediction methods fail to consider the environmental factors and do not consider the real growing environment of crops, resulting in low genomic prediction accuracy. In this work, we propose a genotype-environment interaction genomic prediction method in maize, called GEFormer, based on integrating the gating mechanism MLP and linear attention mechanism.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.
Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.
View Article and Find Full Text PDFPest Manag Sci
January 2025
School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, Australia.
Background: A deletion mutation in the degron tail of auxin coreceptor IAA2 was found to confer resistance to the herbicide 2,4-D in Sisymbrium orientale. Given the importance of auxin signalling in plant development, this study was conducted to investigate whether this deletion mutation may affect plant fitness.
Results: The F progeny of crosses with two resistant populations P2 (P2♂ × S♀) and P13 (P13♂ × S♀) were used in this study.
Plant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!