ABSTRACT We used molecular markers to identify quantitative trait loci (QTL) that confer resistance in the field to Xanthomonas campestris pv. vesicatoria race T1, a causal agent of bacterial spot of tomato. An F(2) population derived from a cross between Hawaii 7998 (H 7998) and an elite breeding line, Ohio 88119, was used for the initial identification of an association between molecular markers and resistance as measured by bacterial populations in individual plants in the greenhouse. Polymorphism in this cross between a Lycopersicon esculentum donor of resistance and an elite L. esculentum parent was limited. The targeted use of a core set of 148 polymerase chain reaction-based markers that were identified as polymorphic in L. esculentum x L. esculentum crosses resulted in the identification of 37 markers that were polymorphic for the cross of interest. Previous studies using an H 7998 x L. pennellii wide cross implicated three loci, Rx1, Rx2, and Rx3, in the hypersensitive response to T1 strains. Markers that we identified were linked to the Rx1 and Rx3 loci, but no markers were identified in the region of chromosome 1 where Rx2 is located. Single marker-trait analysis suggested that chromosome 5, near the Rx3 locus, contributed to reduced bacterial populations in lines carrying the locus from H 7998. The locus on chromosome 5 explained 25% of the phenotypic variation in bacterial populations developing in infected plants. An advanced backcross population and subsequent inbred backcross lines developed using Ohio 88119 as a recurrent parent were used to confirm QTL associations detected in the F(2) population. Markers on chromosome 5 explained 41% of the phenotypic variation for resistance in replicated field trials. In contrast, the Rx1 locus on chromosome 1 did not play a role in resistance to X. campestris pv. vesicatoria race T1 strains as measured by bacterial populations in the greenhouse or symptoms in the field. A locus from H 7998 on chromosome 4 was associated with susceptibility to disease and explained 11% of the total phenotypic variation. Additional variation in resistance was explained by plant maturity (6%), with early maturing families expressing lower levels of resistance, and plant habit (6%), with indeterminate plants displaying more resistance. The markers linked to Rx3 will be useful in selection for resistance in elite x elite crosses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-95-0519 | DOI Listing |
NPJ Biofilms Microbiomes
December 2024
Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.
The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.
View Article and Find Full Text PDFNat Commun
December 2024
Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
Heritable phenotypic variation plays a central role in evolution by conferring rapid adaptive capacity to populations. Mechanisms that can explain genetic diversity by describing connections between genotype and organismal fitness have been described. However, the difficulty of acquiring comprehensive data on genotype-phenotype-environment relationships has hindered the efforts to explain how the ubiquitously observed phenotypic variation in populations emerges and is maintained.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.
View Article and Find Full Text PDFEcol Lett
January 2025
Aquatic Ecology and Evolution, University of Konstanz, Konstanz, Germany.
Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator.
View Article and Find Full Text PDFJ Infect Dis
December 2024
Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
Background: Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and sepsis and an important cause of disease in adults. Capsular polysaccharide and protein-based GBS vaccines are currently under development.
Methods: Through national laboratory-based surveillance, invasive GBS isolates were collected from patients of all ages between 2019 and 2020.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!