Harpins of phytopathogenic bacteria stimulate defense and plant growth in many types of plants, conferring disease resistance and enhanced yield. In a previous study, we characterized nine fragments of the harpin protein HpaG(Xooc) from Xanthomonas oryzae pv. oryzicola for plant defense elicitation and plant growth stimulation activity relative to the intact protein. In plants grown under controlled conditions, the fragment HpaG10-42 was more active in both regards than HpaG(Xooc). Here, we demonstrate that the activity of HpaG10-42 in rice under field conditions significantly exceeds that of HpaG(Xooc), stimulating resistance to three important diseases and increasing grain yield. We carried out tests in 672 experimental plots with nine cultivars of rice planted at three locations. Application protocols were optimized by testing variations in application rate, frequency, and timing with respect to rice growth stage. Of the concentrations (24, 24, 12, and 6 microg/ml), and number and timing of applications (at one to four different stages of growth) tested, HpaG10-42 at 6 microg/ml applied to plants once at nursery seedling stage and three times in the field was most effective. Bacterial blight, rice blast, and sheath blight were reduced 61.6 and 56.4, 93.6 and 76.0, and 93.2 and 55.0% in indica and japonica cultivars, respectively, relative to controls. Grain yields were 22 to 27% greater. These results are similar to results obtained with typical local management practices, including use of chemicals, to decrease disease severities and increase yield in rice. Our results demonstrate that the HpaG10-42 protein fragment can be used effectively to control diseases and increase yield of this staple food crop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-98-7-0792 | DOI Listing |
Mol Plant
January 2025
State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:
Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.
View Article and Find Full Text PDFPest Manag Sci
January 2025
School of Life Science, Anhui Agricultural University, Hefei, China.
Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
Rice is exposed to attacks by the three most destructive pathogens, (), pv. (), and (), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea.
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.
Xanthomonas oryzae pv. oryzae (Xoo) is a bacterial pathogen responsible for bacterial leaf blight (BLB) in rice, which can result in significant yield losses of up to 70%. A study evaluated the spread of Xoo in rice fields using environmental samples and employed colorimetric loop-mediated amplification (cLAMP) and PCR for detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!