Downy mildew, caused by Peronospora arborescens, has become the major disease affecting oilseed poppy (Papaver somniferum) since its first record in Tasmania in 1996. Two field trials conducted in 2000 and 2001 studied the progression and spatial distribution of downy mildew epiphytotics. The logistic and exponential models best described the progression of disease incidence and severity, respectively. Incidence and severity increased rapidly following canopy closure. In 2001, incidence increased from 0.16%, prior to canopy closure, to 100% at late flowering (40 days). Spatial analyses of epiphytotics were conducted by fitting the beta-binomial and binomial distributions, median runs analysis, and the spatial analysis by distance indices. All analyses demonstrated that the distribution of incidence and severity was strongly spatially aggregated from canopy closure until at least late flowering. These results suggest that secondary spread from a few primary infections is the major factor in epiphytotics.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO.2003.93.6.752DOI Listing

Publication Analysis

Top Keywords

downy mildew
12
incidence severity
12
canopy closure
12
oilseed poppy
8
late flowering
8
spatiotemporal analysis
4
epiphytotics
4
analysis epiphytotics
4
epiphytotics downy
4
mildew oilseed
4

Similar Publications

Grape downy mildew, caused by poses a threat to grape cultivation globally. Early detection of fungicide resistance is critical for effective management. This study aimed to assess the prevalence and distribution of mutations associated with resistance to Quinone oxide inhibitors (QoI, FRAC 11), Quinone inside inhibitors (QiIs, FRAC 21, cyazofamid), Carboxylic acid amides (CAA, FRAC 41), and Quinone inside and outside inhibitor, stigmatellin binding mode (QioSI, FRAC 45, ametoctradin) in populations in the eastern United States and Canada; and evaluate whether these mutations are linked to fungicide resistance correlate with specific clades.

View Article and Find Full Text PDF

Generation of novel bpm6 and dmr6 mutants with broad-spectrum resistance using a modified CRISPR/Cas9 system in Brassica oleracea.

J Integr Plant Biol

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Using an optimized CRISPR/Cas9 system to knock out the BTB-POZ and MATH domain gene BoBPM6 and the DOWNY MILDEW RESISTANCE 6 gene in Brassica oleracea resulted in new lines with broad-spectrum disease resistance.

View Article and Find Full Text PDF

The conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State Austria for the pesticide active substance lysate of C2c Maky and the considerations as regards the inclusion of the substance in Annex IV of Regulation (EC) No 396/2005 are reported. The context of the peer review was that required by Regulation (EC) No 1107/2009 of the European Parliament and of the Council. The conclusions were reached on the basis of the evaluation of the representative use of lysate of C2c Maky as a fungicide against downy mildew () on grapevines and table grapes.

View Article and Find Full Text PDF

A high-throughput ResNet CNN approach for automated grapevine leaf hair quantification.

Sci Rep

January 2025

Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.

The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!