A series of doubly cyclopalladated complexes of azobenzene and its unsymmetrical substituted derivatives, namely, {LPdCl(mu-AZB)LPdCl}, where AZB is azobenzene, 4-methylazobenzene, 4-aminoazobenzene, or 4-(dimethylamino)-4'-nitroazobenzene, while L is N,N-dimethylformamide, dimethylsulfoxide, or pyridine, have been prepared. Their structural and spectroscopic properties were determined by X-ray diffraction analysis as well as by (1)H NMR, IR, UV-vis, and fluorimetric studies. Experimental results were rationalized by quantum chemical calculations. Crystal structures of several complexes have been resolved, and for the first time, it was demonstrated that the cyclopalladation may take place at the azobenzene aromatic ring having the strong electron-withdrawing substituent at the para position. In all cases, the metalated carbon and N,N-dimethylformamide or dimethylsulfoxide ligands are mutually trans, whereas the pyridine ligands are in the cis arrangement. cis/trans isomerism in the isolated compounds is explained by comparing the calculated energies of isomeric structures. All of the complexes absorb strongly in the visible region, and according to time-dependent density functional theory calculations, most of the absorptions can be attributed to intraligand pi --> pi* or metal-to-ligand charge-transfer transitions. The fluorescence emission was observed for the complexes with 4-aminoazobenzene or 4-(dimethylamino)-4'-nitroazobenzene. The aromaticity of palladacycles is evaluated by several aromaticity indices and related to relevant experimental findings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic8010234DOI Listing

Publication Analysis

Top Keywords

complexes azobenzene
8
4-aminoazobenzene 4-dimethylamino-4'-nitroazobenzene
8
nn-dimethylformamide dimethylsulfoxide
8
structures complexes
8
complexes
5
synthesis characterization
4
characterization dicyclopalladated
4
dicyclopalladated complexes
4
azobenzene
4
azobenzene derivatives
4

Similar Publications

A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker.

Molecules

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.

View Article and Find Full Text PDF

Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.

View Article and Find Full Text PDF

Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems.

View Article and Find Full Text PDF

Stimulus-Responsive Organometallic Assemblies Based on Azobenzene-Functionalized Poly-NHC Ligands.

Chem Asian J

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.

The reversible photoisomerization of azobenzene (AZB) and its derivatives has been applied across various fields. Developing discrete AZB-functionalized organometallic cages is essential for manufacturing functional materials. In this work, we designed and fabricated a series of three-dimensional, hexaazobenzene-terminated poly-NHC-based (NHC=N-heterocyclic carbene) complexes [M(A)](BF) and [M(B)](BF) (M = Ag, Au).

View Article and Find Full Text PDF

Precise Light-Driven Polarity of Stationary Phase for Regulating Gradient Separation of Liquid Chromatography.

Anal Chem

January 2025

Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China.

Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!