Background: This study investigated the biodistribution and therapeutic efficacy of Lutetium-177 (177Lu) radiolabeled anti-Lewis Y monoclonal antibody hu3S193 radioimmunotherapy (RIT) in mice bearing prostate cancer xenografts. The ability of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 and docetaxel chemotherapy to enhance the efficacy of RIT was also assessed in vivo.
Methods: The in vitro cytotoxicity of 177Lu labeled hu3S193 on Le(y) positive DU145 prostate cancer cells was assessed using proliferation assays, with induction of apoptosis measured by ELISA. The in vivo biodistribution and tumor localization of 177Lu-hu3S193 was assessed in mice bearing established DU145 tumor xenografts. The efficacy and maximum tolerated dose of 177Lu-hu3S193 RIT in vivo was determined by a dose escalation study. EGFR inhibitor AG1478 or docetaxel chemotherapy was administered at sub-therapeutic doses in conjunction with RIT in vivo.
Results: 177Lu-hu3S193 mediated significant induction of cytotoxicity and apoptosis in vitro. In vivo analysis of 177Lu-hu3S193 biodistribution demonstrated specific targeting of DU145 prostate cancer xenografts, with maximal tumor uptake of 33.2 +/- 3.9%ID/g observed at 120 hr post-injection. In RIT studies, 177Lu-hu3S193 caused specific and dose-dependent inhibition of prostate cancer tumor growth. A maximum tolerated dose of 350 microCi was determined for 177Lu-hu3S193. Combination of 177Lu-hu3S193 RIT with EGFR inhibitor AG1478 or docetaxel chemotherapy both significantly improved efficacy.
Conclusions: 177Lu-hu3S193 RIT is effective as a single agent in the treatment of Le(y) positive prostate cancer models. The enhancement of RIT by AG1478 or docetaxel indicates the promise of combined modality strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597150 | PMC |
http://dx.doi.org/10.1002/pros.20856 | DOI Listing |
Prostate
January 2025
Department of Urology, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey.
Background: Metastatic castration resistance prostate cancer (mCRPC) is a challenging disease with a significant burden of mortality and morbidity. Most of the patients attain resistance to the available treatments, necessitating further novel therapies in this clinical setting. Actinium 225 (Ac) prostate-specific membrane antigen (PSMA) radioligand therapy has emerged as a promising option and has been utilized for the last decade.
View Article and Find Full Text PDFBMC Urol
January 2025
The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, 350122, China.
Background: In recent years, many studies have illustrated that the neutrophil-to-lymphocyte ratio (NLR) is a prognostic factor of metastatic castration-resistant prostate cancer (mCRPC), but their conclusions are controversial. The aim of this study was to assess the prognostic value of the NLR in patients with mCRPC treated with docetaxel-based chemotherapy.
Methods: Database searches were conducted in PubMed, EMBASE and the Cochrane Library to retrieve relevant published English-language literature up to 20 February 2023.
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China.
Purpose: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pelvic lymph node dissection (ePLND) by preoperative nomograms.
Methods: [Ga]Ga-PSMA-617 PET/CT scan of 116 eligible PCa patients (82 in the training cohort and 34 in the test cohort) who underwent radical prostatectomy with ePLND were analyzed in our study. The Med3D deep learning network was utilized to extract discriminative features from the entire prostate volume of interest on the PET/CT images.
Cell Death Dis
January 2025
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!