Genetic modelling of the PTEN/AKT pathway in cancer research.

Clin Transl Oncol

Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain.

Published: October 2008

The focus on targeted therapies has been fuelled by extensive research on molecular pathways and their role in tumorigenesis. Novel models of human cancer have been created to evaluate the role of specific genes in the different stages of cancer. Currently, mouse modelling of human cancer is possible through the expression of oncogenes, specific genetic mutations or the inactivation of tumour suppressor genes, and these models have begun to provide us with an understanding of the molecular pathways involved in tumour initiation and progression at the physiological level. Additionally, these mouse models serve as an excellent system to evaluate the efficacy of currently developed molecular targeted therapies and identify new potential targets for future therapies. The PTEN/AKT pathway is implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. Deregulation of the PTEN/AKT pathway is a common event in human cancer. Despite the abundant literature, the physiological role of each element of the pathway has begun to be uncovered thanks to genetically engineered mice. This review will summarise some of the key animal models which have helped us to understand this signalling network and its contribution to tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12094-008-0262-1DOI Listing

Publication Analysis

Top Keywords

pten/akt pathway
12
human cancer
12
targeted therapies
8
molecular pathways
8
cancer
5
genetic modelling
4
modelling pten/akt
4
pathway
4
pathway cancer
4
cancer focus
4

Similar Publications

Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.

Cell Mol Biol Lett

January 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.

Subjects And Methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats.

View Article and Find Full Text PDF

Introduction: Lung cancer is recognized as a highly lethal disease, demanding swift and accurate solutions. Previous analysis showed the cytotoxic impact of extract containing ergost-22-en-3-one and ergost-7-en3-ol against A549 lung cancer cells, with an IC value of 9.38 μg/mL.

View Article and Find Full Text PDF

Background: Neuronal survival and regeneration are critical aspects of recovery from ischemic brain injuries. Astragaloside IV (AS-IV), a saponin extracted from the traditional Chinese medicine Astragalus membranaceus, has shown promise in promoting neuronal health. This study investigates the effects of AS-IV on neuronal survival and apoptosis post-oxygen-glucose deprivation (OGD), focusing on the modulation of the PTEN/AKT signaling pathway.

View Article and Find Full Text PDF

Background: Globally, Breast Cancer (BC) is the most frequent cancer in women and has a major negative impact on the physical and emotional well-being of its patients as well as one of the most common cancers to be diagnosed. Numerous studies have been published to identify various molecular pathways, including PI3K/AKT/PTEN. Moreover, growing evidence suggests that miRNAs have been found to play a vital role in the growth and carcinogenesis of tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!