Elemental wine analysis is often required from a nutritional, toxicological, origin and authenticity point of view. Inductively coupled plasma based techniques are usually employed for this analysis because of their multi-elemental capabilities and good limits of detection. However, the accurate analysis of wine samples strongly depends on their matrix composition (i.e. salts, ethanol, organic acids) since they lead to both spectral and non-spectral interferences. To mitigate ethanol (up to 10% w/w) related matrix effects in inductively coupled plasma atomic emission spectrometry (ICP-AES), a microwave-based desolvation system (MWDS) can be successfully employed. This finding suggests that the MWDS could be employed for elemental wine analysis. The goal of this work is to evaluate the applicability of the MWDS for elemental wine analysis in ICP-AES and inductively coupled plasma mass spectrometry (ICP-MS). For the sake of comparison a conventional sample introduction system (i.e. pneumatic nebulizer attached to a spray chamber) was employed. Matrix effects, precision, accuracy and analysis throughput have been selected as comparison criteria. For ICP-AES measurements, wine samples can be directly analyzed without any sample treatment (i.e. sample dilution or digestion) using pure aqueous standards although internal standardization (IS) (i.e. Sc) is required. The behaviour of the MWDS operating with organic solutions in ICP-MS has been characterized for the first time. In this technique the MWDS has shown its efficiency to mitigate ethanol related matrix effects up to concentrations of 1% (w/w). Therefore, wine samples must be diluted to reduce the ethanol concentration up to this value. The results obtained have shown that the MWDS is a powerful device for the elemental analysis of wine samples in both ICP-AES and ICP-MS. In general, the MWDS has some attractive advantages for elemental wine analysis when compared to a conventional sample introduction system such as: (i) higher detection capabilities; (ii) lower ethanol matrix effects; and (iii) lower spectral interferences (i.e. ArC(+)) in ICP-MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2008.09.023 | DOI Listing |
Curr Environ Health Rep
January 2025
School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.
Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia.
Integration of various types of omics data is an important trend in contemporary molecular oncology. In this regard, high-throughput analysis of trace and essential elements in cancer biosamples is an emerging field that has not yet been sufficiently addressed. For the first time, we simultaneously obtained gene expression profiles (RNA sequencing) and essential and trace element profiles (inductively coupled plasma mass spectrometry) for a set of human cancer samples.
View Article and Find Full Text PDFEnviron Int
January 2025
Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea. Electronic address:
This study evaluated the inhalation of mask-derived materials by simulating real breathing conditions and examined how the amount of inhaled materials varies with breathing flow rate and duration. Three types of non-certified reusable masks and two types of certified disposable masks were selected. For each mask, five different hazardous materials were captured and analyzed in three replicates with two breathing flow rates of 30 L/min and 85 L/min and two breathing time combinations of 15 min and 60 min.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.
Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, China. Electronic address:
The existing studies on the association between multi-metal mixture exposure and cognitive function in the older adults are limited and controversial, with no studies considering the mediating effect of thyroid hormones on the connection between them. This study of 441 urban older adults assessed 21 urinary metal levels and cognitive function using the Mini-Mental State Examination (MMSE). Urinary metal levels were measured via inductively coupled plasma mass spectrometry (ICP-MS), and thyroid hormones levels were obtained from medical records.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!