Schizophrenia is a severe psychiatric disease with complex etiology, affecting approximately 1% of the general population. Most genetics studies so far have focused on disease association with common genetic variation, such as single-nucleotide polymorphisms (SNPs), but it has recently become apparent that large-scale genomic copy-number variants (CNVs) are involved in disease development as well. To assess the role of rare CNVs in schizophrenia, we screened 54 patients with deficit schizophrenia using Affymetrix's GeneChip 250K SNP arrays. We identified 90 CNVs in total, 77 of which have been reported previously in unaffected control cohorts. Among the genes disrupted by the remaining rare CNVs are MYT1L, CTNND2, NRXN1, and ASTN2, genes that play an important role in neuronal functioning but--except for NRXN1--have not been associated with schizophrenia before. We studied the occurrence of CNVs at these four loci in an additional cohort of 752 patients and 706 normal controls from The Netherlands. We identified eight additional CNVs, of which the four that affect coding sequences were found only in the patient cohort. Our study supports a role for rare CNVs in schizophrenia susceptibility and identifies at least three candidate genes for this complex disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561936PMC
http://dx.doi.org/10.1016/j.ajhg.2008.09.011DOI Listing

Publication Analysis

Top Keywords

rare cnvs
12
three candidate
8
candidate genes
8
role rare
8
cnvs schizophrenia
8
cnvs
7
schizophrenia
6
recurrent cnvs
4
cnvs disrupt
4
disrupt three
4

Similar Publications

Background: Atezolizumab plus bevacizumab has shown promising efficacy in advanced mucosal melanoma in the multi-centre phase II study. This report updates 3-year survival outcomes and multi-omics analysis to identify potential response biomarkers.

Methods: Forty-three intention-to-treat (ITT) patients received intravenous administration of atezolizumab and bevacizumab every 3 weeks.

View Article and Find Full Text PDF

UniVar: A variant interpretation platform enhancing rare disease diagnosis through robust filtering and unified analysis of SNV, INDEL, CNV and SV.

Comput Biol Med

December 2024

Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; Laboratory of Computational Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China. Electronic address:

Background: Interpreting the pathogenicity of genetic variants associated with rare diseases is a laborious and time-consuming endeavour. To streamline the diagnostic process and lighten the burden of variant interpretation, it is crucial to automate variant annotation and prioritization. Unfortunately, currently available variant interpretation tools lack a unified and comprehensive workflow that can collectively assess the clinical significance of these types of variants together: small nucleotide variants (SNVs), small insertions/deletions (INDELs), copy number variants (CNVs) and structural variants (SVs).

View Article and Find Full Text PDF

Long-read sequencing can often overcome the deficiencies in routine microarray or short-read technologies in detecting complex genomic rearrangements. Here we used Pacific Biosciences circular consensus sequencing to resolve complex rearrangements in two patients with rare genetic anomalies. Copy number variants (CNVs) identified by clinical microarray -chr8p deletion and chr8q duplication in patient 1, and interstitial deletions of chr18q in patient 2-were suggestive of underlying rearrangements.

View Article and Find Full Text PDF

Purpose: Structural variants such as multiexon deletions and duplications are an important cause of disease but are often overlooked in standard exome/genome sequencing analysis. We aimed to evaluate the detection of copy-number variants (CNVs) from exome sequencing (ES) in comparison with genome-wide low-resolution and exon-resolution chromosomal microarrays (CMAs) and to characterize the properties of de novo CNVs in a large clinical cohort.

Methods: We performed CNV detection using ES of 9859 parent-offspring trios in the Deciphering Developmental Disorders (DDD) study and compared them with CNVs detected from exon-resolution array comparative genomic hybridization in 5197 probands from the DDD study.

View Article and Find Full Text PDF

Intellectual disability (ID) is defined as a severe impairment in reasoning, learning, and problem-solving abilities along with adaptive behavior that occurs before the age of 18 years. The present study aimed to present the clinical and genetic data of a cohort of Turkish pediatric patients diagnosed with the ultrarare (which only up to 20 cases having been reported in the relevant literature thus far) ID phenotype. A total of 29 patients from 26 different families, who were diagnosed with ultrarare ID upon whole exome sequencing (WES) analysis, were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!