Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Perinatal phencyclidine (PCP) treatment has been used to model brain pathological processes that may be present in schizophrenia such as increased apoptosis during early brain development, and long-term alterations in expression of parvalbumin-containing interneurons and glutamatergic N-methyl-D-aspartate (NMDA) receptors. We report that this treatment also affects receptor expression of another excitatory neurotransmitter receptor, the muscarinic receptor. Female rat pups received injections of the NMDA receptor antagonist PCP (10 mg/kg, s.c.) or saline on postnatal days (PN)7, 9 and 11. [3H]Pirenzepine binding to M1/4 receptors was examined at four time-points (PN12, 18, 32 and 96) following treatment cessation. Significant effects of treatment on [3H]pirenzepine binding were evident immediately after treatment cessation with a decrease in PCP-treated rats at PN12 in the prefrontal cortex (-24%, p<0.05) and hippocampus (-19%, p<0.05). After this initial decrease, binding subsequently increased to 47% above control levels in the prefrontal cortex of adolescent animals, which remained elevated in adulthood (+10%, p<0.05), while in the hippocampus there was a trend towards increased binding in adolescent animals and no change thereafter. This work adds to findings demonstrating that perinatal PCP exposure leads to long-term imbalance of excitatory and inhibitory neurotransmitter systems, supporting its relevance as a developmental model of schizophrenia pathology. Alterations in muscarinic receptor expression may contribute specifically to the cognitive impairments reported to occur after perinatal NMDA receptor antagonist treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2008.10.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!