In this study, we analyzed the validity of the conventional 80% power. The minimal sample size and power needed to guarantee non-overlapping (1-alpha)% confidence intervals for population means were calculated. Several simulations indicate that the minimal power for two means (m = 2) to have non-overlapping CIs is .80, for (1-alpha) set to 95%. The minimal power becomes .86 for 99% CIs and .75 for 90% CIs. When multiple means are considered, the required minimal power increases considerably. This increase is even higher when the population means do not increase monotonically. Therefore, the often adopted criterion of a minimal power equal to .80 is not always adequate. Hence, to guarantee that the limits of the CIs do not overlap, most situations require a direct calculation of the minimum number of observations that should enter in a study.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Department of Electrical Engineering, College of Engineering, Qassim University, Buraidah, 52571, Saudi Arabia.
Unbalanced power systems cause transformers and generators to overheat, system losses to climb, and protective devices to trigger. An optimization-based control technique for distributed generators (DG) balances demand and improves power quality in three imbalanced distribution systems with 10, 13, and 37 nodes. Each system phase has its own DG.
View Article and Find Full Text PDFACS Appl Electron Mater
December 2024
Department of Electronics and Computer Science, University of Granada, Granada 18071, Spain.
In the evolution of pervasive electronics, it is imperative to significantly reduce the energy consumption of power systems and embrace sustainable materials and fabrication processes with minimal carbon footprint. Within this context, thermoelectric generators (TEGs) have garnered substantial attention in recent years because of the readily available thermal gradients in the environment, making them a promising energy-harvesting technology. Current commercial room-temperature thermoelectrics are based on scarce, expensive, and/or toxic V-VI chalcogenide materials, which limit their widespread use.
View Article and Find Full Text PDFFront Big Data
December 2024
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
Introduction: Self-efficacy is a critical determinant of students' academic success and overall life outcomes. Despite its recognized importance, research on predictors of self-efficacy using machine learning models remains limited, particularly within Muslim societies. This study addresses this gap by leveraging advanced machine learning techniques to analyze key factors influencing students' self-efficacy.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
School of Mechanical Engineering, Pusan National University, Busan, Korea.
Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process.
View Article and Find Full Text PDFSci Rep
December 2024
Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!