Background: Myonecrosis due to group A streptococci (GAS) often develops at sites of nonpenetrating muscle injury, and nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the severity of these cryptic infections. We have previously shown that GAS bind to vimentin on injured skeletal muscles in vitro. The present study investigated whether vimentin up-regulation in injured muscles in vivo is associated with homing of circulating GAS to the injured site and whether NSAIDs facilitate this process.

Methods: M type 3 GAS were delivered intravenously 48 h after eccentric contraction (EC)-induced injury of murine hind-limb muscles. Vimentin gene expression and homing of GAS were followed by real-time reverse-transcriptase polymerase chain reaction and quantitative bacteriology of muscle homogenates, respectively. In separate experiments, ketorolac tromethamine (Toradol) was given 1 h before GAS infusion.

Results: Vimentin was up-regulated approximately 8-fold 48 h after EC. Significantly more GAS were found in moderately injured muscles than in noninjured controls. NSAIDs greatly augmented the number of GAS in injured muscles.

Conclusions: Vimentin may tether circulating GAS to injured muscle, and NSAIDs enhance this process. Strategies targeting the vimentin-GAS interaction may prevent or attenuate GAS myonecrosis. Use of NSAIDs should increase suspicion of cryptic GAS infection in patients with increasing pain at sites of nonpenetrating muscle injury.

Download full-text PDF

Source
http://dx.doi.org/10.1086/593016DOI Listing

Publication Analysis

Top Keywords

muscle injury
12
gas injured
12
gas
11
nonsteroidal anti-inflammatory
8
anti-inflammatory drugs
8
sites nonpenetrating
8
nonpenetrating muscle
8
nsaids increase
8
injured muscles
8
circulating gas
8

Similar Publications

Despite advancements in surgical techniques for rotator cuff repair, retear rates remain a significant concern. This study systematically reviews the evidence on the effectiveness of the Regeneten Bioinductive Implant in improving healing outcomes. A systematic review of the literature was conducted by searching on PubMed, Embase, Web of Science Core Collection and Cochrane Library.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

: Asymptomatic patellar tendon abnormality (APTA) is considered a precursor to patellar tendinopathy (PT), but its pathogenesis remains unclear, especially regarding changes in muscle coordination. Therefore, it is essential to explore the muscle synergy patterns in individuals with APTA. This study recorded sEMG data during stop-jump tasks in 8 APTA and 8 healthy amateur male basketball players in a simulated basketball game.

View Article and Find Full Text PDF

Biomechanical study of elbow joint: different stages after the elbow anterior capsule injury.

Acta Bioeng Biomech

September 2024

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education.

: Elbow contracture is a common complication post-elbow trauma, the biomechanical environment after anterior capsule injury was complex. This study aimed to use a finite element model to investigate the biomechanical environment within elbow capsule and its surrounding tissues at various stages after anterior capsule injury. : A finite element model of the elbow joint, incorporating muscle activation behavior, was developed to simulate elbow flexion under normal condition (no injury) and at 2, 4, 6 and 8 weeks following anterior joint capsular injury.

View Article and Find Full Text PDF

Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!