A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. | LitMetric

Object: Using cellular transplants to treat spinal cord injury is a promising therapeutic strategy, but transplants grafted directly into the injury site can further damage the already compromised cord. To avoid additional trauma and to simplify translation to the clinic, it is advantageous to use less invasive delivery methods.

Methods: The authors compared the efficacy of intrathecal cell delivery at the lumbar region (lumbar puncture [LP]) to direct injection into a thoracic contusion injury using a mixed population of lineage-restricted neural precursor cells.

Results: Direct injection resulted in a higher volume of neural precursor cells located throughout the injury site, whereas fewer LP-delivered cells accumulated at the dorsal aspect of the injured cord. Both grafting methods were neuroprotective, resulting in reduction of injury size and greater tissue sparing compared with controls. Functional recovery was evaluated by assessing motor and bladder function. Animals that received cells via direct injection performed significantly better in the open-field locomotor test than did operated controls, while LP-treated animals showed intermediate recovery of function that did not differ statistically from that of either operated controls or directly injected animals. Bladder function, however, was significantly improved in both directly injected and LP-treated animals.

Conclusion: Grafting of stem cells via LP resulted in localized accumulation of cells at the injury site, neuroprotection, and modest recovery of function. Further optimization of the LP procedure by increasing the number of cells that are delivered and determining the optimal delivery schedule may further improve recovery to levels comparable to direct injection.

Download full-text PDF

Source
http://dx.doi.org/10.3171/SPI.2008.9.10.390DOI Listing

Publication Analysis

Top Keywords

direct injection
20
injury site
12
cell delivery
8
delivery lumbar
8
lumbar puncture
8
spinal cord
8
neural precursor
8
bladder function
8
operated controls
8
recovery function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!