High hydrostatic pressure (HHP) inactivation of three Listeria monocytogenes strains (EGDe, LO28, and Scott A) subjected to 350 MPa at 20 degrees C in ACES buffer resulted in survival curves with significant tailing for all three strains. A biphasic linear model could be fitted to the inactivation data, indicating the presence of an HHP-sensitive and an HHP-resistant fraction, which both showed inactivation according to first-order kinetics. Inactivation parameters of these subpopulations of the three strains were quantified in detail. EGDe showed the highest D-values for the sensitive and resistant fraction, whereas LO28 and Scott A showed lower HHP resistance for both fractions. Survivors isolated from the tail of LO28 and EGDe were analyzed, and it was revealed that the higher resistance of LO28 was a stable feature for 24% (24 of 102) of the resistant fraction. These HHP-resistant variants were 10 to 600,000 times more resistant than wild type when exposed to 350 MPa at 20 degrees C for 20 min. Contrary to these results, no stable HHP-resistant isolates were found for EGDe (0 of 102). The possible effect of HHP survival capacity of stress-resistant genotypic and phenotypic variants of L. monocytogenes on the safety of HHP-processed foods is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-71.10.2007DOI Listing

Publication Analysis

Top Keywords

three listeria
8
listeria monocytogenes
8
monocytogenes strains
8
high hydrostatic
8
hydrostatic pressure
8
lo28 scott
8
350 mpa
8
mpa degrees
8
three strains
8
resistant fraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!