A previously untested strain of Bacillus thuringiensis israelensis (Bti) serotype H14 (ID No. VCRC B17) has been evaluated under field conditions in an urban area of Rourkela city, India for its impact on the larval density of different mosquito species in a variety of habitats. The persistence of the biolarvicide used in an aqueous solution varied in different habitats. The lowest field application rate of 0.5 ml/m2 remained effective for about 10-12 days and provided 80-100% reduction in larval abundance of anopheline species, including Anopheles culicifacies breeding in unpolluted water bodies. However, in stagnant polluted waters in drains and cesspools supporting culicine breeding, the biocide at the same rate persists for 5-6 days only. An application rate of 1 ml/m2 to stagnant drains and cesspools, resulted in 84-100% reduction in the larval population of Culex quinquefasciatus over a period of 2 wk. Based on the field observations, an operational dose of 0.5 ml/m2 at fortnightly intervals is suggested for clean water sources supporting anopheline breeding. However, to control breeding of culicine mosquitoes in stagnant and polluted waters, an operational dose of 1 ml/m2 at fortnightly intervals is required. The study showed that Bti serotype H14 (VCRC B17) is a suitable biolarvicide that can be used against different mosquitoes in different types of urban habitats.

Download full-text PDF

Source
http://dx.doi.org/10.2987/5704.1DOI Listing

Publication Analysis

Top Keywords

untested strain
8
bacillus thuringiensis
8
thuringiensis israelensis
8
urban area
8
bti serotype
8
serotype h14
8
h14 vcrc
8
vcrc b17
8
application rate
8
rate ml/m2
8

Similar Publications

Increasing antifungal drug resistance is a major concern associated with human fungal pathogens like Aspergillus fumigatus. Genetic mutation and epimutation mechanisms clearly drive resistance, yet the epitranscriptome remains relatively untested. Here, deletion of the A.

View Article and Find Full Text PDF

Novel str. 1D1416 for Citrus Transformation.

Microorganisms

September 2024

USDA-ARS Crop Improvement and Genetics, Western Regional Research Center, Albany, CA 94710, USA.

Citrus is one of the world's most important and widely produced fruit crops, with over a 100 million metric tons harvested from nearly 10 million hectares in 2023. Challenges in crop maintenance, production, and fruit quality necessitate developing new traits through Agrobacterium-mediated genetic transformation. While a few strains (EHA105, GV3101, LBA4404) are known to transform citrus, many wild strains remain untested.

View Article and Find Full Text PDF

Characterization of human aquaporin ion channels in a yeast expression system as a tool for novel ion channel discovery.

Biosci Rep

August 2024

School of Biomedicine, Faculty of Health and Medical Sciences, and the Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia.

Aquaporin (AQP) channels found in all domains of life are transmembrane proteins which mediate passive transport of water, glycerol, signaling molecules, metabolites, and charged solutes. Discovery of new classes of ion-conducting AQP channels has been slow, likely reflecting time- and labor-intensive methods required for traditional electrophysiology. Work here defines a sensitive mass-throughput system for detecting AQP ion channels, identified by rescue of cell growth in the K+-transport-defective yeast strain CY162 following genetic complementation with heterologously expressed cation-permeable channels, using the well characterized human AQP1 channel for proof of concept.

View Article and Find Full Text PDF

This study supports the development of predictive bacteriophage (phage) therapy: the concept of phage cocktail selection to treat a bacterial infection based on machine learning (ML) models. For this purpose, ML models were trained on thousands of measured interactions between a panel of phage and sequenced bacterial isolates. The concept was applied to associated with urinary tract infections.

View Article and Find Full Text PDF

A comparative study of fermentative performance under standardized wine production conditions.

Food Chem X

March 2024

Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain.

The study explores diverse strains of in single-inoculum wine fermentation conditions using synthetic grape must. It aims to analyze the role of the species without external influences like other microorganisms or natural grape must variability. Commercial strains and selected vineyard isolates, untested together previously, are assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!