Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment.

Environ Sci Technol

Department of Hydrology, University of Bayreuth, 95440 Bayreuth, Germany.

Published: October 2008

Pharmaceutical residues are commonly detected micropollutants in the aquatic environment. Biodegradation in sediments is a potentially significant removal process for these compounds in rivers which is constrained by the transfer of water and solutes into the sediment. The aim of this study was to determine the combined effect of flow velocity and sediment dynamics and thus of water-sediment interactions on the attenuation of 6 acidic pharmaceuticals. We carried out experiments with river water and sediment in a bench-scale annular flume at two different hydraulic boundary conditions (flat sediment surface vs moving sediment). The effective biodegradation half-lives of 4 compounds (diclofenac, bezafibrate, ibuprofen, naproxen) were in the range of 2.5 to 18.6 days and were much shorter when the exchange of surface and pore water was fast. For gemfibrozil, a half-life of 10.5 d was determined in the experiment with moving sediment, whereas no degradation was observed with flat sediment bed. These findings can be attributed to the limited transfer of water and solutes into the sediment at low flow velocity and flat sediment bed which rapidly induced anaerobic conditions in the sediment. The only compound that was efficiently removed in deeper, anoxic sediment layers was naproxen. The calculated half-life distances in rivers ranged from 53 to 278 km. Our results indicate that it could be favorable to increase the rate of exchange between surface and pore water during river restoration to enhance the attenuation of organic micropollutants like acidic pharmaceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es801562jDOI Listing

Publication Analysis

Top Keywords

acidic pharmaceuticals
12
flat sediment
12
sediment
11
transfer water
8
water solutes
8
solutes sediment
8
flow velocity
8
moving sediment
8
exchange surface
8
surface pore
8

Similar Publications

The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.

View Article and Find Full Text PDF

Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs.

View Article and Find Full Text PDF

Visible-light-driven metal- and photocatalyst-free cascade 1,4-HAT and dearomative spirocyclization of -benzylacrylamides are described for sustainable synthesis of a variety of pharmaceutically important γ-ketoamides and 2-Azaspiro[4.5]decanes in one pot in good to excellent yields. Readily accessible and nontoxic materials, expensive Ir or Ru photocatalyst-free mild conditions, excellent functional group tolerance, operational simplicity, and scalability enhance the practical value of this protocol.

View Article and Find Full Text PDF

Effects of tryptophan-selective lipidated GLP-1 peptides on the GLP-1 receptor.

J Endocrinol

January 2025

N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).

View Article and Find Full Text PDF

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!