A field study involving high-resolution core sampling of a 0.5-2 m thick clay bed was undertaken at a contaminated former industrial facility in the UK to establish the nature and significance of preferential contaminant flowpaths. In contrast to most previous research, the focus was upon a buried aquitard, in this case a Holocene lagoonal clay located 6 m below ground surface and overlain by a sand aquifer impacted by historic nonaqueous phase liquid hydrocarbon spills. The study, involving 11 cores over a 630 by 150 m area, demonstrated that the presence of paleo- (i.e., preupper sand) rootholes controlled the degree of dissolved-phase benzene penetration into the aquitard. Where homogeneous, largely paleoroot-free clay is present (hydraulic conductivity 3 x 10(-5) m/d.), contaminant concentrations in the clay decline rapidly with depth: modeling showed the dominant transport process to be diffusion. In other cores, elevated benzene concentrations deep in the clay require advection to have occurred, presumably along preferential pathways. The latter were shown by thin sectioning, core slice mapping and 3-D X-ray tomography to be organic matter lined rootholes of < 2 mm aperture. The significance of such preferential pathways was confirmed quantitatively by measuring hydraulic conductivity (0.04 m/d) and calculating flux, the latter being over 10 times greater than expected from steady state diffusion. Our study hence demonstrates paleoenvironmental control of modern-day contaminant transport through a clay aquitard. It is suggested that many subaerial unconformities in mudrocks, especially those associated with even rudimentary paleosol development would lead to permeability enhancement and therefore afford substantially reduced protection against migrating contaminants. In contaminated site investigations, it is hence necessary to consider the aquitard paleoenvironment and not just the main rock type present.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es800797u | DOI Listing |
Sci Rep
January 2025
Department of Civil Engineering, Delhi Technological University, New Delhi, 110089, India.
Soil reinforcement is one of the techniques used to enhance the engineer characteristics of the soil. Various techniques can be employed to stabilise problematic soils, such as soft clay. These include the utilisation of portland cement, lime, fly ash, ground freezing, jet grouting, prefabricated vertical drains, and thermal approaches.
View Article and Find Full Text PDFCommun Earth Environ
January 2025
Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015 Switzerland.
Fossils preserving soft tissues and lightly biomineralized structures are essential for the reconstruction of past ecosystems and their evolution. Understanding fossilization processes, including decay and mineralisation, is crucial for accurately interpreting ancient morphologies. Here we investigate the decay of marine and freshwater shrimps deposited on the surface of three different clay beds.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Geography and Environment, Loughborough University, Loughborough, LE11 3TU, UK.
Wave ripples can provide valuable information on their formative hydrodynamic conditions in past subaqueous environments by inverting dimension predictors. However, these inversions do not usually take the mixed non-cohesive/cohesive nature of sediment beds into account. Recent experiments involving sand-kaolinite mixtures have demonstrated that wave-ripple dimensions and the threshold of motion are affected by bed clay content.
View Article and Find Full Text PDFGels
November 2024
Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia.
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system.
View Article and Find Full Text PDFPLoS One
December 2024
School of Civil Engineering, Guizhou University, Guiyang, Guizhou Province, China.
In this paper, the road performance and mechanism of cement-phosphogypsum-red clay (CPRC) under dry and wet cycling were systematically investigated using 5% cement as curing agent, the mass ratio of phosphogypsum: red clay = 1:1, and 5% SCA-2 as water stabilizer. The road performance of dry and wet cycle mix was verified with the National Highway G210 Duyun Yangan to Yingshan Highway Reconstruction and Expansion Project as a test road to provide a scientific basis for the application of cement-phosphogypsum-red clay on roads. The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!