Purpose Of The Study: To design, develop and validate a new device allowing the features of corneocytes at the surface of the skin to be visualized in vivo and objectively characterized.

Materials And Methods: Monochromatic light is focused at the proximal end of a coherent bundle of optical fibres. Fluorescence of skin, stained with fluorescein, is then captured by the same fibre bundle and displayed, through a dichroic mirror, by a CCD camera. Fluorescence images are analysed using dedicated software to measure the projected area of cells.

Results: The new device allows the mean projected area of corneocytes to be routinely studied and quantified on most of the skin areas of the human body. Measurements carried out on two age groups of women confirm that corneocyte size on the forearm is smaller in young women than in older women.

Conclusion: The new non-invasive device is easy to use and appear quite appropriate for cutaneous investigations carried out in clinical research.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0846.2008.00315.xDOI Listing

Publication Analysis

Top Keywords

surface skin
8
projected area
8
technique vivo
4
vivo study
4
study corneocyte
4
corneocyte features
4
features surface
4
skin
4
skin purpose
4
purpose study
4

Similar Publications

Giant congenital melanocytic nevi are large pigmented premalignant lesions present at birth that have an associated risk of malignant transformation. Full-thickness excision of these lesions would be required to eliminate this risk. However, giant nevi can leave behind large defects that can be challenging to reconstruct.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Biointerface engineering of flexible and wearable electronics.

Chem Commun (Camb)

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable.

View Article and Find Full Text PDF

Artificial Cephalopod Skins with Switchable Appearance Color.

Macromol Rapid Commun

January 2025

Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.

Cephalopods such as squids, octopuses, and cuttlefishes can change their bodies' color to match the surrounding environments by contracting or expanding the sac just below the surface of the skin. Inspired by this mechanism, artificial cephalopod chromatophores which are prepared by thermoresponsive poly(N-isopropyl acrylamide)-based hydrogel films embedded with black, red, and yellow pigments are presented, they can swell and shrink under temperature stimuli, like the natural chromatophores. The artificial chromatophores embedded with cuttlefish ink are further used to fabricate artificial J.

View Article and Find Full Text PDF

Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!