Background: Women with the AA genotype at the (-2518)A>G promoter polymorphism of CCL-2, which encodes the potent pro-inflammatory chemokine monocyte chemoattractant protein 1 (MCP-1), may be at increased risk for having offspring affected by spina bifida. As the A allele at this locus has been associated with decreased transcription of MCP-1 mRNA relative to the G allele, the observed genetic association suggests that the risk of spina bifida may be increased in the offspring of women with low MCP-1 levels. The present study was undertaken to identify potential determinants of MCP-1 levels in women of reproductive age.
Methods: A small cohort of Caucasian and African-American women of reproductive age was recruited to participate in an exploratory investigation of the determinants of several disease-related, biochemical phenotypes, including MCP-1. Subjects completed a brief questionnaire and provided a fasting blood sample for biochemical and genetic studies. Potential biochemical, genetic, and lifestyle factors were assessed for their association with MCP-1 levels using linear regression analyses.
Results: In this cohort, MCP-1 levels were significantly higher in Caucasians as compared to African-Americans. Further, among women of both races, there was evidence that MCP-1 levels were associated with smoking status, MTHFR 677C>T genotype, and red blood cell tetrahydrofolate levels.
Conclusions: The results of these analyses indicate that, if maternal CCL-2 genotype is related to the risk of spina bifida, this relationship is likely to be more complex than initially hypothesized, perhaps depending upon folate intake, MTHFR 677C>T genotype, the distribution of folate derivatives, and immune/inflammatory activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014088 | PMC |
http://dx.doi.org/10.1002/bdra.20507 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!