Recessive mutations in the phenylalanine hydroxylase (PAH) gene predispose to phenylketonuria (PKU) in conjunction with dietary exposure to phenylalanine. Previous studies have suggested PAH variations could confer risk for schizophrenia, but comprehensive follow-up has not been reported. We analyzed 15 common PAH "tag" SNPs and three exonic variations that are rare in Caucasians but common in African-Americans among four independent samples (total n = 5,414). The samples included two US Caucasian cohorts (260 trios, 230 independent cases, 474 controls), Bulgarian families (659 trios), and an African-American sample (464 families, 401 controls). Analyses of both US Caucasian samples revealed associations with five SNPs; most notably the common allele (G) of rs1522305 from case-control analyses (z = 2.99, P = 0.006). This SNP was independently replicated in the Bulgarian cohort (z = 2.39, P = 0.015). A non-significant trend was also observed among African-American families (z = 1.39, P = 0.165), and combined analyses of all four samples were significant (rs1522305: chi(2) = 23.28, 8 d.f., P = 0.003). Results for rs1522305 met our a priori criteria for statistical significance, namely an association that was robust to multiple testing correction in one sample, a replicated risk allele in multiple samples, and combined analyses that were nominally significant. Case-control results in African-Americans detected an association with L321L (P = 0.047, OR = 1.46). Our analyses suggest several associations at PAH, with consistent evidence for rs1522305. Further analyses, including additional variations and environmental influences such as phenylalanine exposure are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738981 | PMC |
http://dx.doi.org/10.1002/ajmg.b.30862 | DOI Listing |
J Pediatr Endocrinol Metab
January 2025
Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.
Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
Introduction: Heat stress caused by global warming adversely affects wheat yield through declining most nutritional quality attributes in grains, excluding grain protein content.
Methods: This research investigated the biochemical, physiological, and antioxidant responses of wheat plants under heat stress, focusing on the role of plant growth-promoting bacteria ( sp.).
Lab Chip
January 2025
Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division, Ankara, Turkey.
Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention.
View Article and Find Full Text PDFMol Genet Metab Rep
December 2024
School of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran.
Objectives: Phenylketonuria is a hereditary condition caused by the deficiency of the enzyme phenylalanine hydroxylase, leading to abnormal phenylalanine metabolism. Managing phenylketonuria involves implementing dietary interventions to control phenylalanine levels and prevent complications. However, these treatments can lead to long-lasting negative effects, including impacts on bone health and abnormal biochemical test findings.
View Article and Find Full Text PDFSerotonin exerts numerous neurological and physiological actions in the brain and in the periphery. It is generated by two different tryptophan hydroxylase enzymes, TPH1 and TPH2, in the periphery and in the brain, respectively, which are members of the aromatic amino acid hydroxylase (AAAH) family together with phenylalanine hydroxylase (PAH), degrading phenylalanine, and tyrosine hydroxylase (TH), generating dopamine. In this study, we show that the co-chaperone DNAJC12 is downregulated in serotonergic neurons in the brain of mice lacking TPH2 and thereby central serotonin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!