We investigated the effect of carbohydrate and protein hydrolysate ingestion on whole-body and muscle protein synthesis during a combined endurance and resistance exercise session and subsequent overnight recovery. Twenty healthy men were studied in the evening after consuming a standardized diet throughout the day. Subjects participated in a 2-h exercise session during which beverages containing both carbohydrate (0.15 g x kg(-1) x h(-1)) and a protein hydrolysate (0.15 g x kg(-1) x h(-1)) (C+P, n = 10) or water only (W, n = 10) were ingested. Participants consumed 2 additional beverages during early recovery and remained overnight at the hospital. Continuous i.v. infusions with L-[ring-(13)C(6)]-phenylalanine and L-[ring-(2)H(2)]-tyrosine were applied and blood and muscle samples were collected to assess whole-body and muscle protein synthesis rates. During exercise, whole-body and muscle protein synthesis rates increased by 29 and 48% with protein and carbohydrate coingestion (P < 0.05). Fractional synthetic rates during exercise were 0.083 +/- 0.011%/h in the C+P group and 0.056 +/- 0.003%/h in the W group, (P < 0.05). During subsequent overnight recovery, whole-body protein synthesis was 19% greater in the C+P group than in the W group (P < 0.05). However, mean muscle protein synthesis rates during 9 h of overnight recovery did not differ between groups and were 0.056 +/- 0.004%/h in the C+P group and 0.057 +/- 0.004%/h in the W group (P = 0.89). We conclude that, even in a fed state, protein and carbohydrate supplementation stimulates muscle protein synthesis during exercise. Ingestion of protein with carbohydrate during and immediately after exercise improves whole-body protein synthesis but does not further augment muscle protein synthesis rates during 9 h of subsequent overnight recovery.

Download full-text PDF

Source
http://dx.doi.org/10.3945/jn.108.092924DOI Listing

Publication Analysis

Top Keywords

protein synthesis
36
muscle protein
28
overnight recovery
20
subsequent overnight
16
synthesis rates
16
protein
15
protein hydrolysate
12
whole-body muscle
12
protein carbohydrate
12
c+p group
12

Similar Publications

Fatty Acid Esterification of Octacosanol Attenuates Triglyceride and Cholesterol Synthesis in Mice.

J Agric Food Chem

January 2025

Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.

This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.

View Article and Find Full Text PDF

Enhancing Cannabichromenic Acid Biosynthesis in .

ACS Synth Biol

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.

View Article and Find Full Text PDF

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!