Iron supplementation impairs antioxidant status, whereas zinc is recognized as an antioxidant micronutrient. We investigated the effect of supplementing both zinc and iron on iron, zinc, and antioxidant status in 18 women (22-31 y) studied during 2 sequential 8-wk periods. From wk 1 to 8, only iron (50 mg/d) (Fe period) was supplemented and from wk 9 to 16, zinc (25 mg/d) (Fe+Zn period) was also given but at a different time of the day. Indicators of iron (serum iron, iron-binding capacity, and serum ferritin), zinc (serum and urinary zinc), and antioxidant status [ferric-reducing ability of plasma (FRAP); erythrocyte osmotic fragility (EOF); erythrocyte aminolevulinic acid dehydratase (delta-ALAD) activity, and in vitro zinc-delta-ALAD activation (Zn-delta-ALAD%)] were measured at baseline and after each supplementation period. Fe period modified indicators of iron status as expected (P < 0.05) but did not affect indicators of zinc status. Fe+Zn period did not affect indicators of iron status but increased serum and urinary zinc (P < 0.02). Antioxidant status was impaired after the Fe period, as indicated by decreased FRAP (P < 0.005) and delta-ALAD activity (P < 0.05) and increased EOF (P < 0.01). After the Fe+Zn period, FRAP values tended to increase (P = 0.1), delta-ALAD activity and EOF returned to baseline values, and Zn-delta-ALAD% decreased (P < 0.001) compared with baseline. In conclusion, supplementing young women with both zinc and iron protects zinc-related antioxidant indicators previously impaired by iron supplementation without impairment of iron status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3945/jn.108.093260 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!