Download full-text PDF

Source

Publication Analysis

Top Keywords

carbon tetrachloride
4
tetrachloride feeding
4
feeding excretion
4
excretion exogenous
4
exogenous estrogen
4
estrogen ovariectomized
4
ovariectomized guinea
4
guinea pigs
4
carbon
1
feeding
1

Similar Publications

Aqueous Extract of Cornus officinalis Alleviate NAFLD via Protecting Hepatocytes Proliferation through Regulation of the Tricarboxylic Acid Cycle.

J Ethnopharmacol

January 2025

International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China. Electronic address:

Ethnopharmacological Relevance: Cornus officinalis (CO) has been widely used as Chinese herbal medicine and has a good clinical efficacy in liver disease. In particular, it has a significant therapeutic effect on metabolic liver disease. However, systematic pharmacological studies on its hepatoprotective effect on non-alcoholic fatty liver disease (NAFLD) are lacking.

View Article and Find Full Text PDF

Pemigatinib suppresses liver fibrosis and subsequent osteodystrophy in mice.

Hepatol Commun

January 2025

Department of Veterinary Medical Science, Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan.

Background: Liver fibrosis could lead to serious secondary diseases, including osteodystrophy. The interaction between liver and bone has not been fully elucidated, thus existing therapies for osteodystrophy secondary to liver fibrosis are often ineffective. FGF23 was initially found as an endocrine regulator of phosphate homeostasis, but recently, its involvement in fibrosis has been suggested.

View Article and Find Full Text PDF

Hepatic Steatosis Analysis in Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Artificial Intelligence.

Diagnostics (Basel)

December 2024

Peking University People's Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People's Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China.

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of fat in the liver, excluding excessive alcohol consumption and other known causes of liver injury. Animal models are often used to explore different pathogenic mechanisms and therapeutic targets of MASLD. The aim of this study is to apply an artificial intelligence (AI) system based on second-harmonic generation (SHG)/two-photon-excited fluorescence (TPEF) technology to automatically assess the dynamic patterns of hepatic steatosis in MASLD mouse models.

View Article and Find Full Text PDF

Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.

View Article and Find Full Text PDF

Liver fibrosis is a continuous wound-healing response to chronic injury caused by various chemical, virus, and pathological disorders; the lack of approved drugs or methods to reverse or prevent liver fibrosis makes it an interesting area of research. This study investigates the potential hepatoprotective effects of the phenolic extract of in rat's module of liver fibrosis. Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl) for six consecutive weeks; the butanol fraction of and silymarin was administered orally concurrently with CCl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!