The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.20566DOI Listing

Publication Analysis

Top Keywords

rwv bioreactor
20
bone marrow-derived
16
marrow-derived cells
16
hyaline cartilage
16
human bone
12
cartilage tissue
12
adult human
8
pellet culture
8
histological immunohistological
8
immunohistological evaluations
8

Similar Publications

Metabolic Profiles of Encapsulated Chondrocytes Exposed to Short-Term Simulated Microgravity.

Ann Biomed Eng

December 2024

Department of Mechanical and Industrial Engineering, Montana State University, PO Box 173800, Bozeman, MT, 59717-3800, USA.

The mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 g) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight.

View Article and Find Full Text PDF

The rotating-wall vessel (RWV) bioreactor, a 3D suspension culture system, faces challenges related to non-uniform tissue growth during the incubation of bone and heart tissues. Okra mucilage, an extract from okra pods with non-Newtonian rheological properties, has shown potential as a plasma replacement agent and has no induced cytotoxic effects. In this study, we investigated the flow structure of okra mucilage in rotating wall vessel system.

View Article and Find Full Text PDF

The mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 ) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight.

View Article and Find Full Text PDF

The ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during infection, as they experience wide fluid shear fluctuations in the host. However, little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. Herein, we combined mathematical modeling with hydrodynamic bacterial culture to profile transcriptomic and pathogenesis-related phenotypes of multidrug resistant .

View Article and Find Full Text PDF

Structural and Molecular Changes of Human Chondrocytes Exposed to the Rotating Wall Vessel Bioreactor.

Biomolecules

December 2023

Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany.

Over the last 30 years, the prevalence of osteoarthritis (OA), a disease characterized by a loss of articular cartilage, has more than doubled worldwide. Patients suffer from pain and progressive loss of joint function. Cartilage is an avascular tissue mostly consisting of extracellular matrix with embedded chondrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!