Cellular abnormalities in amyotrophic lateral sclerosis (ALS) are not limited to motor neurons. Astrocyte dysfunction also occurs in human ALS and transgenic rodents expressing mutant human SOD1 protein (SOD1(G93A)). Here we investigated focal enrichment of normal astrocytes using transplantation of lineage-restricted astrocyte precursors, called glial-restricted precursors (GRPs). We transplanted GRPs around cervical spinal cord respiratory motor neuron pools, the principal cells whose dysfunction precipitates death in ALS. GRPs survived in diseased tissue, differentiated efficiently into astrocytes and reduced microgliosis in the cervical spinal cords of SOD1(G93A) rats. GRPs also extended survival and disease duration, attenuated motor neuron loss and slowed declines in forelimb motor and respiratory physiological functions. Neuroprotection was mediated in part by the primary astrocyte glutamate transporter GLT1. These findings indicate the feasibility and efficacy of transplantation-based astrocyte replacement and show that targeted multisegmental cell delivery to the cervical spinal cord is a promising therapeutic strategy for slowing focal motor neuron loss associated with ALS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656686PMC
http://dx.doi.org/10.1038/nn.2210DOI Listing

Publication Analysis

Top Keywords

motor neuron
16
cervical spinal
12
transplantation-based astrocyte
8
astrocyte replacement
8
spinal cord
8
neuron loss
8
motor
6
astrocyte
5
focal transplantation-based
4
replacement neuroprotective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!