Transcriptional regulation of defense gene expression is a crucial part of plant defense responses in plant defense environment stresses. As one of the largest plant transcription factor families, MYB (v-myb avian myeloblastosis viral on-cogene homolog) transcription factors play an important role in plant stress tolerance. In this paper, we review the structural features, functional characterization and molecular mechanism of MYB transcription factor family, and discuss the regula-tory roles of transcription factors in plant defense responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3724/sp.j.1005.2008.01265 | DOI Listing |
Science
January 2025
Center for Global Sustainability, University of Maryland, College Park, MD, USA.
Emissions reductions may be met with relatively small costs.
View Article and Find Full Text PDFPLoS One
January 2025
Entomology & Biothreat Management Division, Defense Research Laboratory (DRL-DRDO), Tezpur, Assam, India.
Cotton leaf curl disease (CLCuD) is a major constraint for production of cotton (Gossypium sp.) in Northwest India. CLCuD is caused by a monopartite, circular ssDNA virus belonging to the genus Begomovirus in association with betasatellites and alphasatellites, and ttransmitted by a whitefly vector (Bemisia tabaci).
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Food and Plant Biology Group, School of Agriculture, Universidad de la República, Montevideo, 12900, Uruguay.
Plant Biotechnol J
January 2025
School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia, China.
Superoxide dismutase (SOD) plays an important role to respond in the defence against damage when tomato leaves are under different types of adversity stresses. This work employed microhyperspectral imaging (MHSI) and visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) technologies to predict tomato leaf SOD activity. The macroscopic model of SOD activity in tomato leaves was constructed using the convolutional neural network in conjunction with the long and short-term temporal memory (CNN-LSTM) technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!