Glutaric acidemia type I (GA-I) is an inherited metabolic disease characterized by accumulation of glutaric acid (GA) and striatal degeneration. Although growing evidence suggests that excitotoxicity and oxidative stress play central role in the neuropathogenesis of this disease, mechanism underlying striatal damage in this disorder is not well established. Thus, we decided to investigate the in vitro effects of GA 10nM (a low concentration that can be present initial development this disorder) on l-[(3)H]glutamate uptake and reactive oxygen species (ROS) generation in synaptosomes from striatum of rats. GA reduced l-[(3)H]glutamate uptake in synaptosomes from 1 up to 30min after its addition. Furthermore, we also provided some evidence that GA competes with the glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC), suggesting a possible interaction of GA with glutamate transporters on synaptosomes. Moreover, GA produced a significant decrease in the V(MAX) of l-[(3)H]glutamate uptake, but did not affect the K(D) value. Although the GA did not show oxidant activity per se, it increased the ROS generation in striatal synaptosomes. To evaluate the involvement of reactive species generation in the GA-induced l-[(3)H]glutamate uptake inhibition, trolox (0.3, 0.6 and 6muM) was added on the incubation medium. Statistical analysis showed that trolox did not decrease inhibition of GA-induced l-[(3)H]glutamate uptake, but decreased GA-induced reactive species formation in striatal synaptosomes (1, 3, 5, 10, 15 and 30min), suggesting that ROS generation appears to occur secondarily to glutamatergic overstimulation in this model of organic acidemia. Since GA induced DCFH oxidation increase, we evaluate the involvement of glutamate receptor antagonists in oxidative stress, showing that CNQX, but not MK-801, decreased the DCFH oxidation increase in striatal synaptosomes. Furthermore, the results presented in this report suggest that excitotoxicity elicited by low concentration of GA, could be in part by maintaining this excitatory neurotransmitter in the synaptic cleft by non-competitive inhibition of glutamate uptake. Thus the present data may explain, at least partly, initial striatal damage at birth, as evidenced by acute bilateral destruction of caudate and putamen observed in children with GA-I.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijdevneu.2008.09.004 | DOI Listing |
Nutrients
December 2024
Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hebei Agricultural University, Baoding, China.
Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [F], [Cu], and [Ga].
View Article and Find Full Text PDFChaos
December 2024
The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi'an 710127, China.
Glutamate (Glu) is a crucial excitatory neurotransmitter in the central nervous system that transmits brain information by activating excitatory receptors on neuronal membranes. Physiological studies have demonstrated that abnormal Glu metabolism in astrocytes is closely related to the pathogenesis of epilepsy. The astrocyte metabolism processes mainly involve the Glu uptake through astrocyte EAAT2, the Glu-glutamine (Gln) conversion, and the Glu release.
View Article and Find Full Text PDFFood Res Int
January 2025
Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência eTecnologia de Alimentos (PPGCTA), Belém, Pará, Brazil.
Analysis of the seasonal influence on the physicochemical characteristics and bioactive compounds of bacuri provides support for optimizing production, promoting sustainability and boosting local economic development. This study analyzed bacuri pulp over consecutive years of production (2020-2023), observing variations in dry matter, lipids, soluble solids, pH, proteins, and minerals across harvest seasons. Notable amino acids include glutamic acid, arginine, and alanine, essential for bodily functions, in addition to antioxidant compounds such as flavonoids, stilbenes, and flavonols, which vary between harvests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!