Protein degradation is an essential cellular function that, when dysregulated or impaired, can lead to a wide variety of disease states. The two major intracellular protein degradation systems are the ubiquitin-proteasome system (UPS) and autophagy, a catabolic process that involves delivery of cellular components to the lysosome for degradation. While the UPS has garnered much attention as it relates to neurodegenerative disease, important links between autophagy and neurodegeneration have also become evident. Furthermore, recent studies have revealed interaction between the UPS and autophagy, suggesting a coordinated and complementary relationship between these degradation systems that becomes critical in times of cellular stress. Here we describe autophagy and review evidence implicating this system as an important player in the pathogenesis of neurodegenerative disease. We discuss the role of autophagy in neurodegeneration and review its neuroprotective functions as revealed by experimental manipulation in disease models. Finally, we explore potential parallels and connections between autophagy and the UPS, highlighting their collaborative roles in protecting against neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621359 | PMC |
http://dx.doi.org/10.1016/j.bbadis.2008.10.002 | DOI Listing |
Alzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.
Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the School of Medicine (A.R.T., J.R.), The University of Queensland; Department of Neurology (W.R., P.A.M., R.D.H., L.V.), Royal Brisbane & Women's Hospital; The University of Queensland (P.A.M., R.D.H., L.V.), UQ Centre for Clinical Research; and Genetic Health Queensland (J.R.), Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia.
Tay-Sachs disease is a neurodegenerative disorder characterized by progressive neurologic impairment due to pathogenic variants in the gene that codes for the alpha subunit of β-hexosaminidase. We report 2 cases of adult-onset progressive weakness, ataxia, and neuropsychiatric symptoms in a 30-year-old man and 37-year-old woman. Both patients had compound heterozygosity in the gene with 4 distinct variants.
View Article and Find Full Text PDFLiver Int
February 2025
Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
Background And Aims: Porto-sinusoidal vascular disorder (PSVD) is a rare vascular liver disorder characterised by specific histological findings in the absence of cirrhosis, which is poorly understood in terms of pathophysiology. While elevated hepatic copper content serves as diagnostic hallmark in Wilson disease (WD), hepatic copper content has not yet been investigated in PSVD.
Methods: Patients with a verified diagnosis of PSVD at the Medical University of Vienna and available hepatic copper content at the time of diagnosis of PSVD were retrospectively included.
Adv Sci (Weinh)
January 2025
Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China.
Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!