Chimeric peptide of Met-enkephalin and FMRFa (YGGFMKKKFMRFa-YFa), a kappa-opioid receptor specific peptide, did not induce tolerance and cross-tolerance effects to its analgesic action on day 5 after pretreatment with either YFa or morphine for 4 days. However, pretreatment with YFa for 4 days led to the development of cross-tolerance to the analgesic effects of morphine and also 4 days of pretreatment of morphine resulted in the expression of tolerance to its own analgesic effects. Similar expression of tolerance and cross-tolerance were also observed when YFa was compared with the kappa receptor agonist peptide dynorphin A(1-13) [DynA(1-13)]. Cross-tolerance effects between YFa and DynA(1-13) analgesia were also not observed on day 5. Interestingly, when YFa and DynA(1-13) were tested for their analgesic effects for 5 days, reduction in analgesia on day 3 was observed in case of DynA(1-13) whereas YFa maintained its analgesia for 5 days. Thus, chimeric peptide YFa may serve as a useful probe to understand pain modulation and expression of tolerance and cross-tolerance behavior with other opioids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2008.09.013DOI Listing

Publication Analysis

Top Keywords

chimeric peptide
12
tolerance cross-tolerance
12
analgesic effects
12
expression tolerance
12
peptide met-enkephalin
8
met-enkephalin fmrfa
8
cross-tolerance effects
8
pretreatment yfa
8
morphine days
8
days pretreatment
8

Similar Publications

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Downregulation of semaphorin 4A in keratinocytes reflects the features of non-lesional psoriasis.

Elife

December 2024

Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.

Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown.

View Article and Find Full Text PDF

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!