Microarray-based assay for the detection of genetic variations of structural genes of West Nile virus.

J Virol Methods

Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Rockville, MD 20852, USA.

Published: December 2008

Adaptation through fixation of spontaneous mutations in the viral genome is considered to be one of the important factors that enable recurrent West Nile virus (WNV) outbreaks in the U.S. Genetic variations can alter viral phenotype and virulence, and degrade the performance of diagnostic and screening assays, vaccines, and potential therapeutic agents. A microarray assay was developed and optimized for the simultaneous detection of any nucleotide mutations in the entire structural region of WNV in order to facilitate public health surveillance of genetic variation of WNV. The DNA microarray consists of 263 oligonucleotide probes overlapping at half of their lengths which have been immobilized on an amine-binding glass slide. The assay was validated using 23 WNV isolates from the 2002-2005 U.S. epidemics. Oligonucleotide-based WNV arrays detected unambiguously all mutations in the structural region of each one of the isolates identified previously by sequencing analysis, serving as a rapid and effective approach for the identification of mutations in the WNV genome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2008.09.015DOI Listing

Publication Analysis

Top Keywords

genetic variations
8
west nile
8
nile virus
8
structural region
8
wnv
6
microarray-based assay
4
assay detection
4
detection genetic
4
variations structural
4
structural genes
4

Similar Publications

Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).

Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.

View Article and Find Full Text PDF

In Vivo Clonal Analysis Using MADM with Spatiotemporal Specificity.

Methods Mol Biol

January 2025

IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.

Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.

View Article and Find Full Text PDF

Backtracking Cell Phylogenies in the Human Brain with Somatic Mosaic Variants.

Methods Mol Biol

January 2025

Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.

View Article and Find Full Text PDF

Mosaic Analysis with Double Markers (MADM) represents a mouse genetic approach coupling differential fluorescent labeling to genetic manipulations in dividing cells and their lineages. MADM uniquely enables the generation and visualization of individual control or homozygous mutant cells in a heterozygous genetic environment. Among its diverse applications, MADM has been used to dissect cell-autonomous gene functions important for cortical development and neural development in general.

View Article and Find Full Text PDF

Tracking Somatic Mutations for Lineage Reconstruction.

Methods Mol Biol

January 2025

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

The human genome is composed of distinct genomic regions that are susceptible to various types of somatic mutations. Among these, Short Tandem Repeats (STRs) stand out as the most mutable genetic elements. STRs are short repetitive polymorphic sequences, predominantly situated within noncoding sectors of the genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!