Objective quantification of arm rigidity in MPTP-treated primates.

J Neurosci Methods

Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.

Published: February 2009

Rigidity is a cardinal symptom of Parkinson's disease and is frequently used as an outcome measure in clinical and non-human primate studies examining the effects of medication or surgical intervention. A limitation of current rigidity assessment methods is that they are inherently subjective. To better understand the physiological mechanisms of rigidity and how various therapeutic approaches work, a more objective and quantitative method is needed. In this study, an automated arm rigidity testing (ART) system was developed to objectively quantify rigidity while the primate's limb was moved between two user-specified angles. Recordings of normal force versus elbow-angle were categorized according to area and slope. These quantitative measures of rigidity were investigated in three rhesus macaque monkeys treated with 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine and compared with clinical assessment methods. The ART system incorporates electromyographical recordings that can detect and differentiate active from actual resistance. The ART system detected significant changes in rigidity measures following administration of apomorphine or deep brain stimulation of the globus pallidus internus. The most sensitive measures were total area, extension slope, and flexion slope. The ART system provides precise and reliable measures of rigidity that are objective and quantitative.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632780PMC
http://dx.doi.org/10.1016/j.jneumeth.2008.09.017DOI Listing

Publication Analysis

Top Keywords

art system
16
rigidity
9
arm rigidity
8
assessment methods
8
objective quantitative
8
measures rigidity
8
objective quantification
4
quantification arm
4
rigidity mptp-treated
4
mptp-treated primates
4

Similar Publications

Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.

Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity.

View Article and Find Full Text PDF

The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high.

View Article and Find Full Text PDF

Study Question: Is there an association between dydrogesterone exposure during early pregnancy and the reporting of birth defects?

Summary Answer: This observational analysis based on global safety data showed an increased reporting of birth defects, mainly hypospadias and congenital heart defects (CHD), in pregnancies exposed to dydrogesterone, especially when comparing to progesterone.

What Is Known Already: Intravaginal administration of progesterone is the standard of care to overcome luteal phase progesterone deficiency induced by ovarian stimulation in ART. In recent years, randomized controlled clinical trials demonstrated that oral dydrogesterone was non-inferior for pregnancy rate at 12 weeks of gestation and could be an alternative to micronized vaginal progesterone.

View Article and Find Full Text PDF

Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are pivotal in the initiation and progression of complex human diseases and have been identified as targets for small molecule (SM) drugs. However, the expensive and time-intensive characteristics of conventional experimental techniques for identifying SM-miRNA associations highlight the necessity for efficient computational methodologies in this field.

Results: In this study, we proposed a deep learning method called Multi-source Data Fusion and Graph Neural Networks for Small Molecule-MiRNA Association (MDFGNN-SMMA) to predict potential SM-miRNA associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!