The exploitation of food residuals can be a major contribution in reducing the polluting load of food industry waste and in developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bioorganic molecules, and thus they may have potential uses in several biocatalytic processes, including green organic synthesis, modification of food physicochemical properties, bioremediation, etc. Although the use of bacterial and fungal enzymes has gained attention in studies pertaining to biocatalytic applications, plant enzymes have been given less consideration or even disregarded. Therefore, we investigated the use of a crude peroxidase preparation from solid onion by-products for oxidizing ferulic acid, a widespread phenolic acid, various derivatives of which may occur in food wastes. The highest enzyme activity was observed at a pH value of 4, but considerable activity was retained up to a pH value of 6. Favorable temperatures for increased activity varied between 20-40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated ferulic acid solution showed the formation of a dimer as a major oxidation product.

Download full-text PDF

Source
http://dx.doi.org/10.1263/jbb.106.279DOI Listing

Publication Analysis

Top Keywords

ferulic acid
12
food
5
peroxidase-active cell
4
cell free
4
free extract
4
extract onion
4
onion solid
4
solid wastes
4
wastes biocatalytic
4
biocatalytic properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!