Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the effectiveness of sodium hydroxide/ethylene glycol (NaOH/EG) for dehalogenation of automobile shredder residue (ASR) using a ball mill. Efficient dehalogenation was achieved at atmospheric pressure by combining the use of EG (196 degrees C b.p.) as a replacement solvent for NaOH with ball milling, which improved contact between ASR and OH(-) in solution. Moderate NaOH concentrations and increased ball mill rotation speeds produced high dechlorination that was not significantly affected by the weight ratio of ASR to EG. NaOH/EG dechlorination increased with temperature with an apparent activation energy of 50 kJ mol(-1) confirming that the reaction proceeded under chemical reaction control. The modified shrinking-core model was appropriate to explain the dechlorination process. Low chloro levels in our NaOH/EG-treated ASR suggested that this material could be used for feedstock recycling and the wet process may be applicable for dehalogenation of other important waste streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2008.09.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!